期刊文献+

基于显著闭合边界的压缩域图像检索 被引量:1

Image retrieval in compressed domain based on salient closed boundary
下载PDF
导出
摘要 提出了一种直接从压缩域提取显著闭合边界进行图像检索的算法。从压缩域直接提取块边缘,使用基于网络流理论的比率轮廓算法从块边缘图像中提取显著闭合边界,用傅立叶描述子刻画显著闭合边界,进行图像检索。实验结果表明,直接从压缩域提取显著闭合边界,无需解压,减少了计算量,提取的显著闭合边界应用在图像检索中取得了较高的准确率。 A new image retrieval algorithm which based on salient closed boundary extracted directly from compressed domain is proposed, Firstly, block edges is extracted directly from compressed domain without decompressing. Secondly, network flow based ratio contour algorithm is used to extract salient closed boundary, Finally, Fourier descriptors is used to describe the closed boundary and retrieve images. Experimental results demonstrate that extracting block edge from compressed domain saves a lot of computation cost, and using the detected closed boundary in the image retrieval gets a high precision.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第9期2286-2289,2292,共5页 Computer Engineering and Design
基金 重庆市科委自然科学基金项目(CSTC-2006BB2309)
关键词 闭合边界 块边缘 格式塔法则 图像检索 比率轮廓 closed boundary block edge gestalt law image retrieval ratio-contour
  • 相关文献

参考文献10

  • 1Song Wang, Toshiro Kubota, Jeffrey M Siskind, et al. Salient closed boundary extraction with ratio contour[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005,27(4):546-561.
  • 2Song Wang, Stahl J S, Bailey A, et al. Global detection of salient convex boundaries[J]. International Journal of Computer Vision, 2007,71 (3):337-359.
  • 3Mahamud S, Williams L R, Thomber K K, et al. Segmentation of multiple salient closed contours from real images[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2003,25(4): 433-444.
  • 4Saund E. Finding perceptually closed paths in sketches and drawings[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2003, 25(4):475-491.
  • 5Francisco J Estrada, Allan D Jepson. Robust boundary detection with adaptive grouping[C]. Washington, DC, USA: Conference on Computer Vision and Pattern Recognition Workshop, 2006: 184-192.
  • 6Chang H S, Kang K. A compressed domain scheme for classifying block edge patterns[J]. IEEE Transactions on Image Processing, 2005,14(2): 145-151.
  • 7Ian H Jermyn, Hiroshi Ishikawa. Globally optimal regions and boundaries as minimum ratio weight cycles[J]. IEEE Trans Pattern Analysis and Machine Intelligence,2001,23 (10): 1075-1088.
  • 8Hiroshi Ishikawa, Ian H Jermyn. Region extraction from multiple images[C]. Vancouver, BC, Canada: Proceedings of the Eighth IEEE International Conference on Computer Vision, 2001:509-516.
  • 9Zhang D,Lu G.A comparative study on shape retrieval using fourier descriptors with different shape signatures[C]. Fargo, ND, USA: Proc of International Conference on Intelligent Multimedia and Distance Education, 2001:1-9.
  • 10张曦煌,卞国春,李红.基于统计特征的DCT压缩域纹理图像检索方法[J].计算机工程与设计,2006,27(7):1282-1285. 被引量:3

二级参考文献10

共引文献2

同被引文献9

  • 1Gu Yuhua, Tjahjadi T. Corner-based Feature Extraction for Object Retrieval[C]//Proc. of IEEE Conference on Image Processing. Kobe, Japan: IEEE Press, 1999.
  • 2Bober M. MPEG-7 Visual Shape Descriptors[J]. IEEE Trans. on Circuit and Systems for Video Technology, 2001, 11(6): 716-719.
  • 3Feng Songhe, Xu De, Yang Xu. Attention-driven Salient Edge(s) and Region(s) to CBIR[J]. Signal Processing, 2010, 90(1): 1-15.
  • 4Itti L, Koch C, Niebur E. A Model of Saliency-based Visual Attention for Rapid Scene Analysis[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(4): 162-173.
  • 5Itti L, Koch C. Feature Combination Strategies for Saliency- based Visual Attention Systems[J]. Journal of Electronic Imaging, 2001, 10(1): 161-169.
  • 6Perona P, Malik J. Detecting and Localizing Edges Composed of Steps, Peaks and Roofs[C]//Proc. of International Conference on Computer Vision. Osaka, Japan: [s. n.], 1990.
  • 7曾智勇,姚志强,蔡声镇,翁祖茂,周利华.一种使用显著封闭边界的图像检索算法[J].系统工程与电子技术,2007,29(11):1977-1980. 被引量:1
  • 8翟国,宋余庆,谈佳宁,徐庆.基于兴趣点和边缘特征的图像检索方法的研究[J].计算机工程与设计,2009,30(5):1148-1150. 被引量:12
  • 9韩军伟,郭雷.一个使用显著边缘进行图像检索的算法[J].模式识别与人工智能,2003,16(2):145-151. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部