期刊文献+

基于属性重要性的关联分类方法 被引量:2

Association rule classification based on important rule
下载PDF
导出
摘要 提出了基于属性重要性的关联分类方法。与传统算法不同的是根据属性重要性程度生成类别关联规则;并且在构造分类器时改进了CBA算法中对于具有相同支持度、置信度规则选择时的随机性。实验结果证明,用该方法得到的分类规则与传统的关联分类算法相比,复杂度低,且有效提高了分类效果。 Associative classification rules based on importance of attributes is presented. Compared with other algorithms, this algorithm is proposed to apply the importance of attribute measure to the generation of candidate itemsets. Moreover, in the process of building classifier, a new strategy to rank class association rules in order to discriminate between rules which have identical confidences or supports and to prune rule redundancy and conflicts is proposed. The experiments show that, compared with CBA method, the method could filter out many candidate itemsets in the generation process, resulting in a much smaller set of rules, and can improve the efficiency of classification.
作者 胡文瑾 李明
出处 《计算机工程与设计》 CSCD 北大核心 2008年第9期2336-2338,2355,共4页 Computer Engineering and Design
基金 甘肃省教育厅科研基金项目(0603-10)
关键词 数据挖掘 关联分类 属性重要性 规则的优先度 数据库覆盖 data mining associative classification rules importance of attributes global order of rules database coverage
  • 引文网络
  • 相关文献

参考文献7

  • 1Liu B, Hsu W, Ma Y. Integrating classification and association rule mining[C]. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998:80-86.
  • 2Li Wenmin, Han Jiawei, Pei Jian. CMAR: Accurate and efficient classification based on multiple class-association rule [C]. ICDM 2001. San Jose, California: IEEE Computer Society, 2001:369-376.
  • 3Maria-Luiza Antonie, Osmar R Zaiane. An associative classifier based on positive and negative rules[C]. Paris, France: Proceedings of 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2004:64-69.
  • 4韩家炜,孟小峰,王静,等.数据挖掘——概念与技术[M].北京机械工业出版社,2001.
  • 5Chen Guoqing, Liu Hongyan, Yu Lan. A new approach to classification based on association rule mining [J]. Decision Support System, 2006,42(2):674-689.
  • 6Li W. Classification based on multiple association rules [D]. Simon Fraser University, 2001.
  • 7Merz C J, Murphy P. UCI repository of machine learning databases [EB/OL]. http://www.cs.uci.edu/-mlearn/MLRepository. html.

同被引文献6

引证文献2

二级引证文献3

相关主题

;
使用帮助 返回顶部