期刊文献+

基于粗糙集的手写体数字识别多分类器 被引量:1

Recognition of Handwritten Numerals by Using Multi-classifiers Based on Rough Sets
下载PDF
导出
摘要 提出了一种新的手写体数字识别方法。首先采用多分类器提取手写体数字的各类特征,以提高识别正确率;然后利用粗糙集对这些特征属性约简来提高识别速度。测试结果表明,该算法的提出是成功的。 A new method to recognize handwritten numerals is proposed. First, multi-classifiers is used to obtain some handwritten numerals' attributes to improve recognition accuracy. Then, by using rough set theory to reduce some attributes, it can improve the task's running time. Experiment results show that the new method is successful.
作者 宋丹
出处 《科学技术与工程》 2008年第10期2711-2713,2723,共4页 Science Technology and Engineering
关键词 手写体数字 多分类器 粗糙集 图像识别 handwritt.en digital multi-classifiers rough sets picture identification
  • 相关文献

参考文献2

二级参考文献9

  • 1郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:158
  • 2谭永红.多层前向神经网络的RLS训练算法及其在辨识中的应用[J].控制理论与应用,1994,11(5):594-599. 被引量:28
  • 3江剑 贺琛 唐振民 等.基于神经网络和多特征融合的手写体数字识别[J].计算机研究与发展,1999,7:26-30.
  • 4Kato N,Suzuki M,Aso H,et al. A Handwritten Character Recognition System Using Directional Element Feature and Asymmetric Mahalanobis Distance.lEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(3).
  • 5Jin Lianwen, Wei Gang. Handwritten Chinese Character Recognition with Directional Decomposition Cellular Features. Journal of Circuits, Systems, and Computers, 1998, 8(4): 517-524.
  • 6Gao Xue, Jin Lianwen, Yin Junxun, et al. A New Stroke-based Directional Feature Extraction Approach for Handwritten Chinese Character Recognition.Proceedings of Sixth International Conference oa Document Analysis and Recognition,2001:635- 639.
  • 7Jin Lianwen, Yin Junxun, Gao Xue, et al. Study of Several Directional Feature Extraction Methods with Local Elastic Meshing Technology for HCCR.Computer Science and Technology in New Century,Hangzhou, China, 2001:232-236.
  • 8Castlman K R. Digital Image Processing. Prentice Hall, Inc., 1996.
  • 9韩宏,杨静宇.神经网络分类器的组合[J].计算机研究与发展,2000,37(12):1488-1492. 被引量:13

共引文献11

同被引文献18

  • 1杨庆雄.基于神经网络的字符识别研究[J].信息技术,2005,29(4):92-94. 被引量:12
  • 2Blum H.A Trnasofmration for Extracting New Parameter of Shape[M]∥Models for the Perception of Speech and Visual Form.MIT:Cambridge,1967.
  • 3Blum H.Biological Shape and Visual Science[J]. Journal of Theoretical Biology,1973,38(2):205-287.
  • 4Marogos P A,Schafer R W.Morphological Skeleton Representation and Coding of Binary Images[J].IEEE Trans on Speech and Signal Processing,1986,34(5):1228-1244.
  • 5Shoji K.Generalized Skeleton Representation and Adaptive Prectangular Decomposition of Binary Image[C]∥Proc of SPIE Conf on Image Algebra and Morphological Image Processing,1992:404-415.
  • 6Cyr M,Kimia B B.3D Object Recognition Using Shape Similiarity-Based Aspect Graph[C]∥Proc of the Eighth Int’l Conf on Computer Vision,2001:254-261.
  • 7Wenyu L,Hua L,Guangxi Z.A Fast Algorithm for Corner Detection Using the Morphologic Skeleton[J].Pattern Recognition Letters,2001,22(8):891-901.
  • 8Piella G,Heuimans H,J A M.Adaptive Lifting Schemes with Perfect Reconstruction[J].IEEE Transactions on Signal Processing,2002,50(7):1620-1630.
  • 9Victor B,Bowyer K,Sarkar S.An Evaluation of Face and Ear Biometrics[C]∥Proc of the 16th Int’l Conf on Pattern Recognition,2002:429-432.
  • 10Xiangqian W,David Z,Kuanquan W.Fisherpalms Based Palmprint Recognition[J].Pattern Recognition Letters ,2003,24(15):2829-2838.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部