期刊文献+

广义互补问题一个新的等价转化及误差界估计

New Reformulation and Error Bound Estimation of the Generalized Nonlinear Complementarity Problem Over a Polyhedral Cone
下载PDF
导出
摘要 将多面体锥上的广义互补问题等价地转化为一个混合互补形式的广义互补问题,然后利用混合互补问题的相关结论,给出了该转化形式下广义互补问题的误差界估计成立的两个充要条件:半稳定、2-正则。一般地,由半稳定可以得到2-正则,但反之不然。最后证明了在严格互补条件下二者等价。 The generalized nonlinear complementarity problem over a polyhedral cone (GNCP) is reformulated as a mixed complementarity problem( MCP), and then the error bound estimation of the GNCP based on the related results on the latter problem is estimated. To guarantee that the error bound estimation holds, the relations between the error bound, the semistability and 2-regularity of the solutions are discussed. In the end, the semistability,2- regularity and weak regularity are equivalent under the condition of strictcomplementarity.
作者 张利霞
机构地区 济宁学院数学系
出处 《科学技术与工程》 2008年第11期2945-2947,共3页 Science Technology and Engineering
基金 山东省教育厅科研项目(J07WH03) 济宁学院2007年度科研项目(2007JK10)资助
关键词 广义互补问题 混合互补问题 误差界估计 半稳定 2-正则 GNCP MCP Error-bound estimation semistability 2-regularity
  • 相关文献

参考文献8

  • 1[1]Ferris M C,Pang J S.Engineering and economic applications of complementarity problems.SIAM Review,1997;(39):669-713
  • 2[2]Jiang H,Fukushima M,Qi L,et al.A trust region method for the solving of the generalized nonlinear complementarity problem.SIAM J Optim,1998;(8):140-157
  • 3[3]Kanzow C.Fukushima M.Equivalence of the the generalized nonlinear complementarity problem to differentiable unconstrained minimization.J Optim Theory Appl,1996;(90):581-603
  • 4[4]Wang Y,Ma F.Zhang J,A nonsmooth L-M method for solving the generalized nonlinear complementarity problem over a polyhedral cone.Appl Math Optim,2005;(52):73-92
  • 5[5]Daryina A N,Izmailov A F,Solodov M V.A class of active-set Newton methods for mixed complementarety problems.SIAM J Optim,2004;(15):409-429
  • 6[6]Mangasarian O L,Solodov M V.Nonlinear complementarity as unconstrained and constrained minimization.Math Programming,1993;(62):277-297
  • 7[7]Luo Z Q.New error bound and their applications to convergence analysis of iteration algoithms.Math Programming,2000;(88):341-355
  • 8[8]Izmailov A F,Solodov M V.Error bounds for 2-regular mappings with Lipshitzian derivatives and their applications.Math Programming,2001;(89):413-435

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部