期刊文献+

一种数据流中的频繁模式挖掘算法 被引量:3

Algorithm of frequent-patterns mining in data stream
下载PDF
导出
摘要 时序数据流的无限性、流动性和不规则性使得传统的频繁模式挖掘算法难以适用。针对时序数据流的特点,提出了一类特殊非规则数据流频繁模式挖掘的新算法。新算法采用时序数据分段的思想,逐段挖掘局部频繁模式,然后依据局部频繁模式有效地挖掘出所有的全局频繁模式。将新算法应用于电信领域的收入保障项目之中,结果表明,新算法具有良好的性能,能有效发现挖掘时序数据流中的频繁模式。 The limitlessness, mobility, and irregularity of time series data stream make the traditional frequent-pattern mining algorithms difficult to extend to the mining problem of time series data stream. According to the characteristics of time series data stream, a new algorithm for mining the frequent-pattern from a kind of special irregular data stream was proposed, in which, time series data stream was partitioned firstly, and then the local frequent items were mined step by step. Finally, the global frequent items could be mined efficiently based on these local frequent items. After applying the new algorithm in the revenue assurance project of telecommunication field, the results show that the new algorithm has good performance, and can mine frequent-patterns effectively from the irregular data stream of telecommunication field.
作者 朱琼 施荣华
出处 《计算机应用》 CSCD 北大核心 2008年第6期1463-1466,共4页 journal of Computer Applications
关键词 数据流 频繁模式 非规则 局部频繁项集 全局频繁项集 data stream frequent pattern irregular local frequent item global frequent item
  • 相关文献

参考文献10

  • 1CHARIKAR M, CHEN K, FARACH-COLTON M. Finding frequent items in data streams [ C]// Proceedings of the 29th International Colloquium on Automata, Languages, and Programming (ICALP'02), LNCS 2380. London: Springer-Verlag, 2002: 693- 703.
  • 2KARP R M, SHENKER S, PAPADIMITRIOU C H. A simple algorithm for finding frequent elements in streams and bags [J]. ACM Transactions on Database Systems, 2003, 28(1):51 - 55.
  • 3NAN JIANG, LE GRUENWALD. CFI-Stream: Mining closed frequent itemsets in data streams [ C]//The 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ( KDD 06). New York: ACM Press, 2006:592 -597.
  • 4HAN JIA-WEI, PEI JIAN, YIN YI-WEN, et al. Mining frequent patterns without candidate generation: A frequent pattern tree approach [ J]. Data Mining and Knowledge Discovery, 2004, 8 ( 1 ) : 53 - 87.
  • 5CHENG J, KE YI-PING, NG W. Maintaining frequent itemsets over high-speed data streams [ C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining ( PAKDD 2006), LNAI 3918. Berlin: Springer-Verlag, 2006:462-467.
  • 6MANKU G S , MOTWANI R . Approximate frequency counts over data streams [C]// Proceedings of the 28th International Conference on Very Large Data Bases. Hong Kong: Morgan Kaufmann Publishers, 2002:346-357.
  • 7GIANNELL A, HAN J, PEI J, et al. Mining frequent patterns in data streams at multiple time granularities [ C]// Next Generation Data Mining. [S. l. ] : AAAI/MIT Press, 2003:191 -202.
  • 8刘学军,徐宏炳,董逸生,王永利,钱江波.挖掘数据流中的频繁模式[J].计算机研究与发展,2005,42(12):2192-2198. 被引量:25
  • 9HIDBER C. Online association rule mining [ C]// Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 1999). New York: ACM Press, 1999:145-156.
  • 10CHANG J H, LEE W S. Finding recent frequent itemsets adaptively over online data streams [ C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2003:487-492.

二级参考文献12

  • 1C. Giannella, J. Han, J. Pei, et al. Mining frequent patterns in data streams at multiple time granularities. In: H. Kargupta, A.Joshi, K. Sivakumar, eds. Next Generation Data Mining.Cambridge, Massachusetts: MIT Press, 2003. 191-212.
  • 2G.S. Manku, R. Motwani. Approximate frequency counts over streaming data. The 28th Int'l Conf. Very Large Data Bases(VLDB 2002), Hong Kong, 2002.
  • 3宋国杰 王腾蛟 唐世渭.数据流中频繁模式的评估与维护[A]..第20届全国数据库学术会议[C].长沙,2003..
  • 4R.M. Karp, C. H. Papadimitriou, S. Shenker. A simple algorithm for finding frequent elements in streams and bags. ACM Trans. Database Systems, 2003, 28 (1): 51 - 55.
  • 5M. Charikar, K. Chen, M. Farach-Colton. Finding frequent items in data streams. The 29th Int'l Colloquium on Automata,Languages and Programming, Malaga, Spain, 2002.
  • 6Joong Hyuk Chang, Won Suk Lee. Finding recent frequent itemsets adaptively over online data streams. The 9th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD 03), Washington, D. C, 2003.
  • 7Wei-Guang Teng, Ming-Syan Chen, Philip S. Yu. A regressionbased temporal pattern mining scheme for data streams. The Int'l Conf. Very Large Data Bases, Berlin, Germany, 2003.
  • 8Graham Cormode, Flip Korn, S. Muthukrishnan, et al. Finding hierarchical heavy hitters in data streams. The Int'l Conf. Very Large Data Bases (VLDB) 2003, Berlin, Germany, 2003.
  • 9Tatsuya Asai, Hiroki Arimura, Kenji Abe, et al. Online algorithms for mining semi-structured data stream. The IEEE Int'l Conf. Data Mining (ICDM) 2002, Maebashi City, Japan,2002.
  • 10Graham Cormode, S. Muthukrishnan. What' s hot and what's not: Tracking most frequent items dynamically. The ACM Symposium on Principles of Database Systems (PODS) 2003, San Diego, CA, USA, 2003.

共引文献24

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部