期刊文献+

可调表面上的曲线插值

Curves interpolating on adjustable surface
下载PDF
导出
摘要 提出一个带有多特征的曲线插值可调表面算法。引入形状相似形参数,拓扑地修改初始控制网格。这样使得满足曲线插值的同时,结果表面与初始控制网格有不同的相似性;引入双边控制调节参数,更新插值曲线两边位置,调节插值曲线的弯曲程度;形成求解满足控制曲率的公式。实验结果表明此算法使得曲线插值在可调表面上可行,能够表现出多样性。 An algorithm with multi-features for curves interpolation on adjustable surface was proposed. Similarity parameter of the result surfaces was introduced and the control mesh was modified topologically so as to meet the requirement of curves interpolation and maintain the different similarities between result surface and initial control networks at the same time. Two-side adjustable parameters were introduced. It used the predefined curvature to adjust the bended degree of the curves and created the curvature control formula. The result shows it is available to the curve interpolating adjustable surfaces and the extremely surfaces are diverse.
出处 《计算机应用》 CSCD 北大核心 2008年第6期1510-1513,共4页 journal of Computer Applications
关键词 CATMULL-CLARK细分 曲线插值 可调表面 曲率控制 Catmull-Clark subdivision curves interpolation adjustable surface curvature control
  • 相关文献

参考文献18

  • 1DOO D, SABIN M. Behaviour of recursive division surfaces near extraordinary points [J]. Computer-Aided Design, 1978, 10(6): 356- 360.
  • 2CATMULL E, CLARK J. Recursively generated b-spline surfaces on arbitrary topological meshes [J]. Computer-Aided Design, 1978, 10 (6): 350 -355, Sept. 1978.
  • 3ZORIN D, SCHRODE P. Subdivision for modeling and animation [ C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2000:65 - 102.
  • 4SABIN M. Recent progress in subdivision: A survey [ M]// Advances in Multiresolution for Geometric Modeling. Berlin: Springer-Verlag, 2005:203-230.
  • 5NASRI A. Curve interpolation in recursively generated bspline surfaces over arbitrary topology [J]. Computer-Aided Geometry Design, 1997, 14(1) : 13 -30.
  • 6NASRI A . Recursive subdivision of polygonal complexes and its applications in CAGD [ J]. Computer-Aided Geometry Design, 2000, 17(7): 595 -619.
  • 7NASRI A. A polygonal approach for interpolating meshes of curves by subdivision surfaces [ C]// Proceedings of Geometric Modeling and Processing. Washington: IEEE Computer Society Press, 2000:256 -272.
  • 8NASRI A, ABBAS A. Designing Catmull-Clark subdivision surfaces with curve interpolation constraints [ J]. Computer & Graphics, 2002, 26(3) : 393 - 400.
  • 9ZHANG Jingqiao and WANG Guojin(State Key Laboratory of CAD&CG, Institute of Computer Images and Graphics, Zhejiang University, Hangzhou 310027, China).Curve interpolation based on Catmull-Clark subdivision scheme[J].Progress in Natural Science:Materials International,2003,13(2):142-148. 被引量:3
  • 10NASRI A, SABIN M. Taxonomy of interpolation conditions in recursive subdivision curves [ J]. Journal Visual Computer, 2002, 18(4) : 259 -272.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部