期刊文献+

基于混合微粒群算法的说话人识别 被引量:2

Speaker recognition based on hybrid particle swarm optimization algorithm
下载PDF
导出
摘要 为了解决传统高斯混合模型(GMM)对初值敏感,在实际训练中极易得到局部最优参数的问题,提出了一种采用微粒群算法优化GMM参数的新方法。该方法将最大似然估计融入到微粒群算法迭代过程中,形成了新的混合算法。它利用微粒群算法的全局优化性及最大似然估计的局部寻优性求解高斯混合模型的参数,以提高参数精度。说话人辨认实验表明,与传统的方法相比,新方法可以得到更优的模型参数,使得系统的识别率进一步提高。 The traditional training methods of Gaussian Mixture Model (GMM) are sensitive to the initial model parameters, which often leads to a local optimal parameter in practice. To resolve this problem, a new GMM optimization method was proposed based on Particle Swarm Optimization ( PSO). It utilized Maximum Likelihood (ML) algorithm in the PSO iteration and provided a new architecture of hybrid algorithm. Because of the global optimization characteristic of the particle swarm optimizer method and the strong local searching capacity of ML, it can obtain model parameters with high precision. Experiment for text-independent speaker identification shows that this method can obtain more optimum GMM parameters and better results than the traditional method.
作者 许允喜 陈方
出处 《计算机应用》 CSCD 北大核心 2008年第6期1546-1548,共3页 journal of Computer Applications
关键词 说话人识别 微粒群算法 高斯混合模型 speaker identification Particle Swarm Optimization (PSO) Gaussian Mixture Model (GMM)
  • 相关文献

参考文献9

  • 1REYNOLDS D A, ROSE R C. Robust text-independent speaker identification using Gaussian mixture speaker models [ J], IEEE Transactions Speech Audio Processing, 1995, 3 (1) : 72 -83.
  • 2KENNEDY J, EBERHART R C. Particle swarm optimization [ C]// Proceedings IEEE International Conference on Neural Networks. Perth, WA: IEEE Service Center, 1995:1942 - 1948.
  • 3EBERHART R C, SHI Y. Particle swarm optimization: Developments, applications and resources [ C]//Proceedings of IEEE International Conference on Evolutionary Computation. Washington: IEEE Press, 2001:81-86.
  • 4谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 5LIN LIN, WANG SHU-XUN. Genetic algorithms and fuzzy approach to Gaussian mixture model for speaker recognition [ C]// Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE '05 ). Washington: IEEE Press, 2005:142-146.
  • 6HONG W Y, KWONG S. A genetic classification method for speaker recognition [ J]. Engineering Applications of Artificial Intelligence, 2005, 18(1): 13 -19.
  • 7林琳,王树勋.基于自适应小生境混合遗传算法的说话人识别[J].电子学报,2007,35(1):8-12. 被引量:9
  • 8SHI Y , EBERHART R C . A modified particle swarm optimizer [C]// IEEE World Congress on Computational Intelligence. Proceedings of IEEE International Conference on Evolutionary Computation. Washington: IEEE Press, 1998:69-73.
  • 9EBERHART R C, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization [ C]//Proceedings of the IEEE Conference on Evolutionary Computations (ICEC). Washington: IEEE Press, 2000, 1: 84- 88.

二级参考文献51

  • 1黄聪明,陈湘秀.小生境遗传算法的改进[J].北京理工大学学报,2004,24(8):675-678. 被引量:49
  • 2郭观七,喻寿益.小生态进化技术综述[J].计算机工程与设计,2005,26(4):857-861. 被引量:5
  • 3[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 4[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 5[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 6[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 7[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 8[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 9[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 10[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.

共引文献429

同被引文献12

  • 1林琳,王树勋.基于自适应小生境混合遗传算法的说话人识别[J].电子学报,2007,35(1):8-12. 被引量:9
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3K. Price, R. Store, and J. Lampinen. Differential Evolution: A Practical Approach to Global Optimization[M]. Springer- Verlag, ISBN: 3-540-20950-6, 2005
  • 4李玉毛 刑志栋 董建民.一种基于阶段进化策略的粒子群算法.西北大学学报,2008,6(6):1-6.
  • 5徐宇本.计算智能[M].北京:高等教育出版社,2004.
  • 6R C Eberhart, Y Shi. Comparing intertia weigths and constriction factors in particle swarm optimization[ C]. Proceedings of the IEEE Conference on Evolutionary Computations (ICEC). Washington: IEEE Press, 2000,1:84 - 88.
  • 7I C Trelea. The particle swarm optimization algorithm: Convergence analysis and parameter selection[J]. Information Processing letters, 2003,85(6) :317 -325.
  • 8T Krink, J S Vesterstrom, J Riget. Particle swarm optimization with spatial particle extension[ C]. Proceedings of IEEE Congress on Evolutionary Computation. Honolulu, USA : IEEE, 2002. 1474 - 1497.
  • 9岳佳,王士同.双重高斯混合模型的EM算法的聚类问题研究[J].计算机仿真,2007,24(11):110-113. 被引量:14
  • 10曲政.沉积物粒度数据表征方法的研究[J].中国粉体技术,2001,7(4):24-31. 被引量:28

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部