期刊文献+

基于蚁群优化算法的网格任务映射策略

Tasks mapping in grid computing environment based on ACO algorithm
下载PDF
导出
摘要 针对网格环境下实现任务最优映射的问题,提出一种基于蚁群优化算法的网格任务映射策略(ACO-GTM)。该算法通过人工蚂蚁在构建图上行走构建初始解,利用最优改进2-选择局部搜索方法对初始解进行局部优化,并采用全局信息素更新与局部信息素更新相结合的信息素更新策略。最后通过实验与其他算法进行比较,表明所提出的映射算法在最优跨度和负载平衡方面具有明显的优越性。 In order to optimize the tasks mapping in grid, a grid tasks mapping algorithm based on Ant Colony Optimization (named ACO-GTM) was proposed. The algorithm generated initial solutions through these artificial ants traversed on the construction graph and optimized these initial solutions by using the Best-improvement 2-opt local search algorithm. It combined the global and local pheromone updates. The experiments show that the proposed algorithm for the mapping problem has better performance than other algorithms on optimum makespan and load-balancing.
出处 《计算机应用》 CSCD 北大核心 2008年第6期1598-1600,共3页 journal of Computer Applications
基金 河南省科技攻关项目(0524220042)
关键词 网格计算 任务映射 蚁群优化算法 局部搜索 grid computing tasks mapping ACO local search
  • 相关文献

参考文献7

二级参考文献31

  • 1MAHESWARAN M, ALI S, SIEGEL HJ,et al. Dynamic Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing Systems[A]. Proceedings of the 8th IEEE Heterogeneous Computing Workshop (HCW'99)[C]. IEEE Computer Society Press, 1999. 30-44.
  • 2RITCHIE G, LEVINE J. A Fast, Effective Local Search for Scheduling Independent Jobs in Heterogeneous Computing Enviroments[A]. Proceedings of the 22nd Workshop of the UK Planning and Scheduling Special Interest Group (PLANSIG 2003) [C]. 2003.
  • 3WOLSKI R, SPRING N, HAYES J. The Network Weather Service: A Distributed Resource Performance Forecasting Service for Metacomputing[J]. Journal of Future Generation Computing Systems, October, 1999, 15(5-6): 757-768.
  • 4BHARADWAJ V, GHOSE D, ROBERTAZZI TG. Divisible Load Theory: A New Paradigm for Load Scheduling in Distributed Systems[J]. Cluster Comput., 2003, 6(1):7-17.
  • 5XIAOSHAN HE, SUN XH. VON LASZEWSKI G.QoS Guided Min-Min Heuristic for Grid Task Scheduling[J].Journal of Coputer Science & Technology,2003,(5):442-451.
  • 6CASANOVA H. Simgrid: A Toolkit for the Simulation of Application Scheduling[A]. Proceedings of the 1st International Symposium on Cluster Computing and the Grid[C]. 2001.430.
  • 7FOSTER I, KESSELMAN C. The Grid, Blueprint for a New Computing Infrastructure[R]. San Francisco: Morgan Kaufmann Publishers Inc., 1998. 279-309.
  • 8BRAUN TD, SIEGEL HJ, BECK N.A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems[J].Journal of Parallel and Distributed Computing,2001,61(1):810-837.
  • 9ARMSTRONG R, HENSGEN D, KIDD T.The Relative Performance of Various Mapping Algorithm is Independent of Sizable Variance in Run-time Predictions[A]. Proceedings of the 7th Heterogeneous Computing Workshop (HCW'98)[C]. IEEE Computer Society Press,1998.79-87.
  • 10Romero R,Gallego R A,Monticelli A.Transmission system expansion planning by simulated annealing[J].IEEE Transactions on Power Systems,1996,11(1):364-369.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部