期刊文献+

从张量概念到张量分析 被引量:5

On Tensor:from Concept to Analysis
下载PDF
导出
摘要 张量分析是现代数学物理学的基础工具。从广义相对论开始,到规范场论,以至后来的弦理论的建立都得力于张量分析。张量分析所提供的对曲线坐标系的微分方法,真正实现了非欧几何从概念到演算的革命,而所有这一切都是以张量概念的产生为基础的,黎曼的新几何学观念是张量概念产生的原动力之一。另一方面,黎曼几何学与张量分析的交织发展体现在许多方面,文章描绘这两者从起源到成熟的过程中互相促进的历史。 Tensor analysis is a basic method for modern mathematic physics.The general theory of relativity,the gauge theory and the superstring theory are all founded on tensor analysis.On the basis of the concept of tensor,tensor analysis offers differential coefficient method for curvilinear system of coordinates,which has actually realized a revolution for Non-Euclidean geometry from concept to figure.Herein,this paper puts emphasis on the forming and development of tensor analysis.Search for its historical clues in original literatures and textual research.
作者 黄勇 魏屹东
出处 《科学技术与辩证法》 CSSCI 北大核心 2008年第3期80-83,共4页 Science Technology and Dialectics
  • 相关文献

参考文献8

  • 1A. Cayley ,On Linear Transformations [ A ] ( 1846 ). The Collected Mathematical Papers [ C ]. Cambridge University Press, 1889 ( 1 ) :95 - 112.
  • 2G. F. B. Riemann, Uber Die Hypothesen, Welche der geometrie zu grunde liegen[ A] (1854). Bernhard Riemann, Gesammehe mathematische werke, collected papers [ C ]. Leipzig, 1990.272 - 287.
  • 3G. F. B. Riemann, Commentatio mathematica, qua respondere tentatur quaestioni ab Academia Parisiensi propositae [ A ] ( 1861 ). Bernhard Riemann, Gesammelte mathematische werke, collected papers [ C ]. Leipzig ,423 - 455.
  • 4E. Portnoy, Riemann' s Contribution to Differential Geometry [ J]. Historia Mathematica, 1982,9 : 1 - 18.
  • 5E. B. Christoffel, Ueber die transformation der homogenen differentialausdrucke zweiten grades [ J ]. Reine Angew. Math, 1869,70:46 - 70.
  • 6P. L. Butzer,E. B. Christoffel. The Influence of His Work on Mathematics and the Physical Science [ M ]. Boston: Stuttgart,1981.13 - 14.
  • 7G. Ricci, Methodes de calcul differentielabsolus et leurs applications [ J ]. Mathematische Annalen, 1901,54:128 - 201.
  • 8J. L. Coolidge, A History of Geometrical Methods [ M ]. Oxford, 1940. 421.

同被引文献8

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部