期刊文献+

机器人操作臂工作空间的混合计算方法

A Hybrid Method for the Computation of Robot Manipualtor's Workspace
下载PDF
导出
摘要 机器人操作臂工作空间的形状和体积的精确计算对于其优化问题是非常重要的。为此首先根据从关节空间到工作空间的运动映射关系,使用蒙特卡洛方法产生由点组成的三维机器人工作空间。然后,通过把这些点分解成一系列的切片,获得机器人工作空间每层的二维边界曲线;基于切片曲线,由三维重构的方法产生边界曲面。最后,用数值积分的方法计算了机器人工作空间的体积。 Exact computation of the shape and volume of robot workspace is very important for its optimum design. Firstly, Monte Carlo method is used to generate the three - dimensional (3D) robot workspace composing of points, according to the kinematics mapping from the joints space to the workspace. Then the two - dimensional (2D) boundary curves of each layer of the workspace are obtained by classifying these points into a series of slices. The boundary surfaces are generated by 3D reconstruction method based on the slices curves. Finally, the numerical integration is adopted to calculate the volume of the workspace.
出处 《系统仿真技术》 2008年第2期90-94,101,共6页 System Simulation Technology
基金 河南省基础与前沿研究资助项目(072300440130) 河南省教育厅自然科学基金资助项目(2007460003)
关键词 机器人工作空间 形状和体积 三维重构 数值积分 robot workspace shape and volume three dimensional reconstruction numerical integration
  • 相关文献

参考文献13

  • 1[1]Yunfeng W,Chirikjian G S.A diffusion-based algorithm for workspace generation of highly articulated manipulators[C]∥Proceedings of IEEE International Conference on Robotics and Automation,vol.2.[s.l.]:IEEE,2002:1525-1530.
  • 2[2]Alciatore D,Ng C.Determining manipulator workspace boundaries using the monte carlo method and least squares segmentation[C]∥ASME Robotics:Kinematics,Dynamics and Controls,vol.DE-Vol.72.[s.l.]:ASME,1994:141-146.
  • 3[3]Raster J,Perel D.Generation of manipulator workspace boundry geometry using the monte carlo method and interactive computer graphics[C]∥ASME Trends and Developments in Mechanisms,Machines,and Robotics.[s.l.]:ASME,1998:299-305.
  • 4[4]Richard P Paul.Robot manipulators:mathematics,programming,and control:the computer control of robot manipulators[M].Cambridge:Mass MIT Press,1981.
  • 5[5]Hoppe H,DeRose T.Surface reconstruction from unorganized points[J].Computer Graphics (SIGGRAPH′92 Proceedings),1992,26(2):71-78.
  • 6[6]Meyers D,Skinner S,Sloan K.Surfaces from contours[J].ACM Transactions on Graphics,1992,11(3):228-258.
  • 7[7]Meyers D.Reconstruction of surfaces from planar contours[D].Washington:University of Washington,1994.
  • 8[8]Fuchs H,Kedem Z M,Uselton S P.Optimal surface reconstruction from planar contours[J].Communications of the ACM,1977,20(10):693-702.
  • 9[9]Boissonnat J D.Shape reconstruction from planar cross sections[J].Computer Vision,Graphics,and Image Processing,1988,44(1):1-29.
  • 10[10]Gopi M,Krishnan S,Silva C T.Surface reconstruction based on lower dimensional localized Delaunay triangula-tion[C]∥Eurographics 2000 M.[s.l.]:Blackwell Publishers,2000:51-63.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部