期刊文献+

基于BP网络的典型草原群落自然演替预测模型研究 被引量:2

Studies on Natural Succession Prediction of Typical Steppe Based on BP-NN
下载PDF
导出
摘要 以典型草原植被群落为研究对象,探讨草地生态系统自然演替恢复的动态变化,采用BP人工神经网络,以演替年度为输入量,群落的凋落物、含水量、容重、孔隙度、有机质、微生物量C、土壤N、地上生物量和多年生禾草密度为输出量,对典型草原群落自然演替进程进行模拟和预测。结果表明:BP-NN的稳定性较好,各参数预测结果的平均误差为2.04%,说明BP-NN可适用预测典型草原群落自然恢复演替,其优势在于可模拟了解较少或不确定性和模糊性较大的系统行为,这是传统数学模型所无法实现的,因而是对传统机理模型的重要补充。 Focusing on the natural restoration of typical steppe community, the dynamic progress of the natural restoration and succession of the steppe was studied using BP neural network. Several representative community parameters, i.e. litter biomass, soil water content, soil bulk density, soil porosity, soil organic matter, soil microbial biomass C, soil total N, aboveground biomass, and perennial grass density, in the succession were simulate and predicted by BP-NN. The results of emulational experiment show that BP-NN had very good stability and the average prediction error was 2.04% and those indicate that BP-NN is viable to forecast the self-organized succession of typical steppe community. The advantage of artificial neural network lies on its ability to precisely simulate the vaguely understood and uncertain systemic behavior which cannot be realized by the traditional approaches. As a nonlinear approximator, artificial neural network would be an important tool complementary to the comprehensive models.
出处 《草地学报》 CAS CSCD 2008年第3期251-255,共5页 Acta Agrestia Sinica
基金 农业部公益性行业科研专项(nyhyzx07-022)
关键词 典型草原 人工神经网络 自然演替 预测 Typical steppe Artificial neural network Natural succession Prediction
  • 相关文献

参考文献16

二级参考文献59

  • 1何兴东,高玉葆,刘惠芬.重要值的改进及其在羊草群落分类中的应用[J].植物研究,2004,24(4):466-472. 被引量:57
  • 2洪绂曾.中国草业战略研究的必要性和迫切性[J].草地学报,2005,13(1):1-4. 被引量:33
  • 3成子纯.湖南杉木(实生林)数量化立地质量评价表的编制[J].中南林业科技,1980,(3):8-15.
  • 4李绍石,植物保护学报,1989年,16卷,1页
  • 5陈兆国,时间序列及其谱分析,1988年
  • 6团体著者,昆虫生态及预测预报,1985年
  • 7文新辉,全国青年管理科学与系统科学论文集.1,1991年
  • 8焦李成,神经网络系统理论,1990年
  • 9任继周.草地农业系统发展过程与展望[J].草业学报,2001,10:35-43.
  • 10Gong P,Photogramm Eng Remote Sens,1996年,62卷,513页

共引文献101

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部