期刊文献+

构造性分片线性神经网络逼近 被引量:1

Constructive PWL neural network approximation
下载PDF
导出
摘要 针对非线性系统建模中用标准连续分片线性神经网络(SCPLNN)模型拟合二维平面上离散点的问题,依据逼近误差最小化的原则,提出了一种优化的三角形剖分算法进行区域划分。采用特征点代替采样点进行剖分,并给出了基于这种区域划分的SCPLNN模型逼近算法。将此逼近算法与基于Delaunay剖分SCPLNN模型逼近算法、典范分片线性表示的链接超平面逼近算法进行比较。实验结果表明,基于最优三角形剖分SCPLNN模型逼近算法可以有效和快速提高拟合精确度。 For the problem of approximating two dimensional scattered data with standard continuous piecewise linear neural networks (SCPLNN) model in modeling of nonlinear system, an optimal triangulation algorithm is proposed to subdivide the domain by the standard of minimizing error. During this process, feature points were used in place of sample data to do triangulation, then an algorithm of piece- wise- linear neural networks approximation based on optimal triangulation was given. This algorithm was compared with that based on Delaunay triangulation and that of hinging hyperplanes for canonical piece- wise -linear representation. Results show that fitting precision is improved efficiently and quickly by it.
出处 《电机与控制学报》 EI CSCD 北大核心 2008年第3期319-323,共5页 Electric Machines and Control
基金 国家自然科学基金(60674025) 973计划(2003CB312200)
关键词 神经网络 分片线性神经网络 三角形剖分 逼近算法 neural networks piecewise-linear neural network triangulation approximation algorithms
  • 相关文献

参考文献14

  • 1EDUARDO D, SONTAG. Nonlinear regulation: the piecewise-linear approach [J]. IEEE Trans .Automatic Control. 1981,26(2) : 346 - 357.
  • 2CHUA L O, KANG S M. Section-wise piece wise-linear functions : canonical representation, properties, and applications [ J ]. IEEE Trans. Circuits and Systems, 1997,30 ( 3 ) : 125 - 140.
  • 3BRE1MAN L. Hinging hyperplanes for regression, classification and function approximation [ J ]. IEEE Trans. Information Theory, 1993,39(3) :999 - 1013.
  • 4TARELA J M, ALONSO E, MARTINEZ M V. Region configurations for reliability of lattice piecewise-linear models [ J ]. Mathematical & Computer Modeling, 1999,30( 11,12) :17 -27.
  • 5CHUA L O, DENG A C, Canonical piecewise-linear representation[J]. IEEE Trans. Circuits and Systems, 1998,35( 1 ) :101 - 111.
  • 6NADLE. Pieeewise linear best approximation on triangulations[ J ]. Approxiraation Theory, 1992:499 - 502.
  • 7AZEVEDO E F, Optimal triangular mesh generation by coordinate transformation [J]. SlAM J. Sci. Star. Comput. ,1991,12(4) :755 - 786.
  • 8ftOFFMANN M, OKAMOTO Y. The minimum weight triangulation problem with few inner points [ J ]. Computational heometry, 2006,34 ( 3 ) : 149 - 158.
  • 9SIBSON R. Locally equiangular triangulations [J]. Computer J, 1978(21 ) :243 -245.
  • 10MOUNT D M, SAALFELD A. Globally equiangular triangulations of co-circular points in O (nlogn) time [J]. 4th ACM Syrup, Comput. Geom. 1988:143 - 152.

二级参考文献1

共引文献82

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部