摘要
研究外区域Ω上的四阶波动方程utt+Δ2u+ut=f(u)其中非线性项f(u)取为|u|αu,α>0.首先,得到一般外区域上解的能量衰减估计,即边界Ω不加任何几何条件.进而,提高初值的正则性,又得到更好的衰减估计.
The paper considers the fourth order wave equations utt +△^2u +ut =|u|^αu in exterior domains. Energy decay derives in general exterior domain Ω without any geometrical condition imposed on the boundary 偏dΩ. Further, under the improved regularity of the initial data, a better decay results can be obtained.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第3期20-22,共3页
Journal of Henan Normal University(Natural Science Edition)
关键词
四阶波动方程
耗散
外区域
能量衰减
fourth order wave equation
dissipation
exterior domain
energy decay