期刊文献+

基于句法分析和答案分类的中文问答系统 被引量:14

Chinese Question Answering Based on Syntax Analysis and Answer Classification
下载PDF
导出
摘要 本文根据疑问词和谓语的距离信息对问句进行细致的句型分析,然后对答句进行浅层句法分析,在此基础上,抽取出问题特征集、答句特征集和组合特征集作为分类特征,引入最大熵模型和支持向量机训练答案抽取分类器.基于不同特征组合训练得到的分类器在五类事实性问题上进行了测试,其F值分别达到70.87%和85.75%. This paper first conduets rigorous sentence pattern analysis of questions based on the distance between question word and predicate,and then conduct shallow parse of answer candidate sentences.Based on the analysis, we extract question feature set;answer sentence feature set and combined feature set as our features for answer classification. Then we apply maximum entropy model and support vector machine to these features to train answer classifiers. The F-Measures of the two classifiers' experiment conducted on five kinds of fact-based questions achieve 70.87 % and 85.75 % respectively.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第5期833-839,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60673109)
关键词 中文问答系统 句法分析 答案抽取 最大熵模型 支持向量机 Chinese question answering syntax analysis answer extraction maximum entropy model(MEM) support vector machine ( SVM )
  • 相关文献

参考文献13

  • 1Harabagiu S, Moldovan D, et al. FAIL-ON:boosting knowledge for answer engines[ A]. Proceedings of Ninth the Text Retrieval Conference[ C ]. Gaithersburg, Maryland, USA: NIST, 2000.479 - 488.
  • 2Lita L V, Carbonell J. Instance-based question answering: a data driven approach[A]. Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics ( ACL 2004) [ C]. Morristown, NJ: ACL Press, 2004.396 - 403.
  • 3Sun A, Jiang M, Ma Y. An instance-based approach for pinpointing answers in Chinese question answering [A]. In Proceedings of 8th International Conference on Signal Processing[ C]. Piscataway, NJ, USA: IEEE press, 2006. 1620 - 1623.
  • 4Chu-Carroll J, Czuba K, Duboue P, et al. IBM's PIQUANT Ⅱ in TREC2005 [ A] .Proceedings of the Fourteenth Text Retrieval Conference[ C ]. Gaithersburg, Maryland, USA: NIST,2005.
  • 5Ittycheriah A, Roukos S. IBM's statistical question answering system-TREC 11[C]. Proceedings of the TREC-2002 Conference [ C ]. Gaithersburg, Maryland, USA: NIST, 2002.
  • 6Moldovan D, Harabagiu S, et al. LCC tools for question answering[ A]. Proceedings of the Eleventh Text Retrieval Conference[ C]. Gaithersburg, Maryland: NIST, 2002.144 - 155.
  • 7Echihabi A, Marcu D. A noisy-channel approach to question answering[ A ]. Hinrichs, E, Roth, D (Eds) Proceedings of 41 st Annual Meeting of the Association for Computational Linguistics [ C]. Morristown, NJ: ACL Press, 2003.16 - 23.
  • 8郑实福,刘挺,秦兵,李生.自动问答综述[J].中文信息学报,2002,16(6):46-52. 被引量:165
  • 9徐延勇,周献中,井祥鹤,郭忠伟.基于最大熵模型的汉语句子分析[J].电子学报,2003,31(11):1608-1612. 被引量:16
  • 10Berger A,Pietra S,Pietra V.A maximum entropy approach to natural language processing [ J ]. Computational Linguistics, 1996,22(1):39 - 71.

二级参考文献21

  • 1孙宏林,俞士汶.浅层句法分析方法概述[J].当代语言学,2000,2(2):74-83. 被引量:38
  • 2[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 3[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 4[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 5[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 6[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 8[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 9[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 10[5]C.L.A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question Answering by Passage Selection. Proceedings of the night Text Retrieval Conference (TREC-9)

共引文献182

同被引文献195

引证文献14

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部