期刊文献+

信息表的闭离散化方案研究

Study of closed discretization schemes of information tables
下载PDF
导出
摘要 提出对象域U的有序划分概念,讨论一种特殊的离散化方案(闭离散化方案)。给出对象域U的有序划分对应的闭离散化方案获取算法CDA,分析闭离散化方案与对象域U的有序划分之间的关系,证明了闭离散化方案在离散格到划分格的映射f下能保持交并运算。 This paper reviews the concept of discretization lattice composed by discretization schemes,proposes the concept of ordered partition of universe U,and discusses a special kind of discretization schemes named closed discretization schemes.We give a closed discretization scheme acquisition algorithm (CDA) for an ordered partition of universe U,analyze the relationship between closed discretization schemes and ordered partitions,and draw the conclusion that under the function f from discretization lattice to partition lattice,closed discretization schemes hold the union and intersection operations.
作者 王立宏
出处 《计算机工程与应用》 CSCD 北大核心 2008年第16期30-33,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60772028) 山东省自然科学基金(the NaturalScience Foundation of Shandong Province of China under Grant No.Y2006G22)
关键词 闭离散化方案 离散格 有序划分 粗集 closed discretization schemes discretization lattice ordered partition rough set
  • 相关文献

参考文献6

  • 1苗夺谦.Rough Set理论中连续属性的离散化方法[J].自动化学报,2001,27(3):296-302. 被引量:139
  • 2Liu Li-li,Wong A K C.A global optimal algorithm for Class-dependent discretization of continuous data[J].Intelligent Data Analysis, 2004,8: 151-170.
  • 3王立宏,吴耿锋.信息表的离散格研究[J].模式识别与人工智能,2004,17(1):11-16. 被引量:3
  • 4王立宏,吴耿锋.信息表离散格的进一步研究[J].模式识别与人工智能,2005,18(1):25-30. 被引量:2
  • 5Yao Y Y,Yao J T.Granular computing as a basis for consistent classification problems[C]//PAKDD Workshop on Foundation of Data Mining, Taipei, Taiwan, 2002 ,5 ( 2 ) : 101-106.
  • 6Greco S,Matarazzo B,Slowinski R.Rough approximation by dominance relations[J].International Journal of Intelligent Systems,2002,17: 153-171.

二级参考文献21

  • 1苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 2Grzymala-Busse J W. Stefanowski J, Three Discretization Methods for Rule Induction. Intemational Journal of Intelligent System.s, 2001, 16:29-38.
  • 3Clarke E 1, Barton B A. Entropy and MDL Diseretization of Continuous Variables for Bayesian Belief Networks. International Journal of Intelligent Systems, 2000, 15 : 61 - 92.
  • 4Francis E H T, Shen Lixiang. A Modified Chi2 Algorithm for Discretization. 1EEE Trails on Knowledge and Data Engineering,2002, 14(3): 666-670.
  • 5Silverstein C, Brin S, Motwani R. Beyond Market Baskets: Generalizing Association Rules to Dependence Rules. Data Mining and Knowledge Discovery, 1998, 2:39-68.
  • 6Bay S D. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 2001, 5:213 - 246.
  • 7Bay S D. Multivariant Diseretization for Set Mining. Knowledge and Information Systems, 2001, 3:491-512.
  • 8Yao Y Y, Yao J T. Granular Computing as a Basis for Consistent Classification Problems. Communications of Institute of Information and Computing Machinery, 2002. 5(2): 101-106.
  • 9欧俊豪 王家生.应用概率统计(第二版)[M].天津:天津大学出版社,2001.264-268.
  • 10Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部