期刊文献+

基于准则的KMSE分类模型的改造

Kernel Minimum Squared Error model's improvement based on criterion
下载PDF
导出
摘要 在再生核理论基础之上,可认为KMSE模型对应的特征空间的鉴别向量可以表示为部分训练样本的线性组合。可据此对一般的KMSE方法(GKMSE)通过某些手段加以改进。文章的准则被首次提出并应用于KMSE的改造,据此提出的改进的KMSE方法在很大程度上提高了KMSE模型的分类效率,同时实验结果也证明了该算法具有比较好的分类效果。 According to the reproducing kernel theory,the discriminant vector in the feature space associated with Kernel Minimum Squared Error (KMSE) model can be approximately expressed in terms of a linear combination of samples selected from all of the training samples.This implies that the general KMSE can be improved for more efficient implementation.The criterion is proposed for the first time in the paper,and then an improved kernel minimum squared error algorithm has been developed based on the criterion,and the experiments show that the proposed method not only is simple,efficient,but also has good performance.
作者 池艳广
出处 《计算机工程与应用》 CSCD 北大核心 2008年第16期46-48,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60602038) 广东省自然科学基金(the Natural Science Foundation of Guangdong Province of China under Grant No.06300862)
关键词 核最小均方误差(KMSE) 再生核 改进的核最小均方差 鉴别向量 Kernel Minimum Squared Error(KMSE) reproducing kernel Improved Kernel Minimum Squared Error discriminantvector
  • 相关文献

参考文献1

二级参考文献13

  • 1Xu Jianhua, Zhang Xuegong, Li Yanda. Kernel MSE Algorithm: A Unified Framework for KFD, LS-SVM and KRR // Proc of the International Joint Conference on Neural Networks. Washington, USA, 2001:1486-1491
  • 2Billings S A, Lee K L. Nonlinear Fisher Discriminant Analysis Using a Minimum Squared Error Cost Function and the Orthogonal Least Squares Algorithm. Neural Networks, 2002, 15(2): 263-270
  • 3Chen S, Hong X, Harris C J. Sparse Kernel Regression Modeling Using Combined Locally Regularized Orthogonal Least Squares and D-Optimality Experimental Design. IEEE Trans on Automatic Control, 2003, 48(6): 1029-1036
  • 4Mika S, Ratsch G, Weston J, etal. Fisher Discriminant Analysis with Kernels//Proc of the IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing. Madison, USA, 1999, Ⅸ: 41-48
  • 5Mika S, Smola A J, Scholkopf B. An Improved Training Algorithm for Kernel Fisher Discriminants// Proc of the 8th International Workshop on Artificial Intelligence and Statistics. San Francisco, USA, 2001:98-104
  • 6Xu Yong, Yang Jingyu, Lu Jianfeng. An Efficient Kernel-Based Nonlinear Regression Method for Two-Class Classification // Proc of the International Conference on Machine Learning and Cybernetics. Guangzhou, China, 2005,Ⅶ: 4442-4445
  • 7Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 2001, 1 (3): 211-244
  • 8Xu Yong, Yang Jingyu, Yang Jian. A Reformative Kernel Fisher Discriminant Analysis. Pattern Recognition, 2004, 37 (6) : 1299-1302
  • 9Xu Yong, Yang Jingyu, Lu Jianfeng, et al. An Efficient Renovation on Kernel Fisher Discfiminant Analysis and Face Recognition Experiments. Pattern Recognition, 2004, 37 (10) : 2091-2094
  • 10Xu Yong, Zhang D, Jin Zhong, et al. A Fast Kernel-Based Nonlinear Discriminant Analysis for Multi-Class Problems. Pattern Recognition, 2006, 39(6): 1026-1033

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部