期刊文献+

一种基于网格索引的数据聚类算法 被引量:1

Data clustering algorithm based on index of gridding
下载PDF
导出
摘要 为了提高基于密度聚类算法的效率,避免算法在执行过程中的多余搜索,提出了一种基于DBSCAN算法的改进的空间数据聚类算法。该算法采用对象邻域空间进行划分的方法,将网格索引结构应用于该算法。在核心对象的邻域内选择八个方向上未标记且距离核心对象最边缘的对象来扩展种子对象,减少查询次数,降低聚类的时间复杂度。在实验中,利用海量数据集对算法进行测试,测试结果证明新算法在保证聚类精度的情况下时间效率显著高于DBSCAN算法。 In order to improve the efficiency of clustering algorithm based on density and avoid redundant search in processing, the paper puts forward an improved spatial data clustering algorithm based on DBSCAN.The algorithm uses the method of object's neighborhood-spatial segmentation,and makes use of index of gridding structure.In core points' neighborhood,the objects without mark which lie in eight aspects and have the biggest distance from core objects are chose to expand seed objects.In the case,the times of query is decreased,and the time complexity of clustering is reduced.In experiment,mass data is used to test the algorithm, which proves that the new algorithm's time efficiency is much better than DBSCAN in the same clustering precision.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第16期139-141,共3页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(the National High-Tech Research and Development Plan of China under Grant No.2003AA41250) 辽宁省教育厅A类基金(No.20243303)
关键词 DBSCAN 网格索引 空间数据 聚类 Density Based Spatial Clustering of Application with Noise(DBSCAN) index of gridding spatial data clustering
  • 相关文献

参考文献5

二级参考文献11

  • 1刘红岩.可扩展的快速分类算法的研究与实现[M].北京:清华大学出版社,2000..
  • 2Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 3Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 4Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 5Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 6Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 7Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 8Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.
  • 9Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430.
  • 10Han J,Proc 2000 ACMSIGMOD Int Conf Management of Data(SIGMOD 2000),2000年

共引文献404

同被引文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部