期刊文献+

基于小波变换的ITS数据双侧最优化集成方法与应用 被引量:1

A Double-sided Optimization of ITS Data Aggregation Via Wavelet Transformation
下载PDF
导出
摘要 通过对ITS数据的频率特性详细分析,近年来迅速发展的基于小波变换的数据集成方法能够高效地满足不同交通用途对数据集成的需求.但现有的集成方法仅通过ITS数据序列之间的共同特性来反映数据的本质特征,忽略了数据集成过程的信息损失问题.本文通过引入信息损失指标,建立双侧最优化的集成方法,提升了数据集成的准确性.在此基础上,开发了基于MATLAB平台的数据集成软件,以北京市三环的交通流数据为例进行了实例分析,提出实际工作中应用数据集成方法的建议. Based on aggregation technique analysis of the frequency characteristics of traffic flow data, the waveletcould meet the demands of various transportation purposes on the aggregation efficiently. However, the method reflects the essential characteristics of data only by analyzing the similarities among ITS data series, which neglects the information loss during aggregation. This Paper develops a double-sided optimization method through introducing Information-Loss Index in order to improve the accuracy during data aggregation. Based on the method, this paper develops the software implementing the algorithm based on MatLab platform, and uses the traffic flow data from the third-ring express road in Beijing as a case study, The conclusions from the paper provideds suggestions for the real applications of the data aggregation.
出处 《交通运输系统工程与信息》 EI CSCD 2008年第1期49-54,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家十五科技攻关计划重大项目“智能交通系统关键技术开发和示范工程”中课题五--智能交通系统数据管理技术研究(2002BA404A05)
关键词 数据集成 小波变换 双侧最优化 信息损失指标 data aggregation wavelet transformation double-sided optimization information-loss index
  • 相关文献

参考文献3

二级参考文献22

  • 1于雷,陈旭梅,耿彦斌,乔凤翔,王欣,刘梦涵,袁振洲.基于小波分解的智能交通系统数据集成方法[J].清华大学学报(自然科学版),2004,44(6):793-796. 被引量:9
  • 2Gajewski B,Turner S,Eisele W,et al.Intelligent Transportation Systems Data Archiving:Statistical Techniques for Determining Optimal Aggregation Widths for Inductive Loop Detector Speed Data [R].Transportation Research Record 1719,Washington DC:TRB,National Research Council,2000.
  • 3Qiao F,Yu L,Wang X.Determining aggregation level for ITS data via wavelet transportation [A].Proceedings of the 12th Annual Meeting (CD-ROM) [C].CA,Long Beach,2002.
  • 4Shawn M.Turner.Guidelines for Developing ITS Data Archiving Systems [R].Report 2127-3,Project Number 0-2127.Texas:The Texas Department of Transportation in cooperation with The U.S.Department of Transportation Federal Highway Administration,2001.
  • 5AASHTO Guidelines for Traffic Data Programs [R].Washington,DC:American Association of State Highway and Transportation Officials,1992.
  • 6Federal Highway Administration,US Department of Transportation.Traffic Monitoring Guide (Third Edition) [M].Washington,DC:Federal Highway Administration,US Department of Transportation,1995.
  • 7Adeli H,Samant A.An adaptive conjugate gradient neural network-wavelet model for traffic incident detection [J].Computer-Aided Civil and Infrastructure Engineering,2000,15(4):115-136.
  • 8Adeli H,Karim A.Fuzzy-wavelet RBFNN model for freeway incident detection [J].J Transp Eng,2000,126(6):233-264.
  • 9Keiser G.Optical Fiber Communications [M].McGraw-Hill Companies,Inc,2000.
  • 10Marks R J.Introduction to Shannon Sampling and Interpolation [M].New York:Springer-Verlag ,1990.

共引文献13

同被引文献13

  • 1于雷,陈旭梅,耿彦斌,乔凤翔,王欣,刘梦涵,袁振洲.基于小波分解的智能交通系统数据集成方法[J].清华大学学报(自然科学版),2004,44(6):793-796. 被引量:9
  • 2张卫华,赵铭军.指标无量纲化方法对综合评价结果可靠性的影响及其实证分析[J].统计与信息论坛,2005,20(3):33-36. 被引量:154
  • 3Guo J, Williams B M, Smith B L. Data collection time intervals for stochastic short-term traffic forecasting [ J ]. Transportation Research Record, 2008, 2024 : 18 - 26.
  • 4Ni D, Leonard J D, Guin A, et al. Multiple imputation scheme for overcoming the missing values and variabili- ty issues in ITS data [ J ]. Journal of Transportation En- gineering, 2005, 131(12) :931 -938.
  • 5Xia J, Chen M. Defining traffic flow phases using intel- ligent transportation systems-generated data [ J ].Jour- nal of Intelligent Transportation System: Technology, Planning, and Operations, 2007, 11 ( 1 ) : 15 - 24.
  • 6Xia J, Chen M. A nested clustering technique for free- way operating condition classification [ J ]. Computer- Aided Civil and Infrastructure Engineering, 2007, 22 (6) :430-437.
  • 7Xia J, Huang W, Qian Z D. A clustering approach to online freeway traffic state identification using ITS data [J]. KSCE Journal of Civil Engineering, 2012, 16 ( 3 ) :426 - 432.
  • 8Qiao F, Yu L, Wang X. Double-sided determination of aggregation level for ITS data [ J ]. Transportation Re- search Record, 2004, 1879:80 - 88.
  • 9Gajewski B J, Turner S M, Eisele W L, et al. ITS data archiving: statistical techniques for determining optimal aggregation widths for inductance loop detectors [ J ]. Transportation Research Record, 2000,1719 : 85 - 93.
  • 10Park D, You S, Rho J, et al. Investigating optimal ag- gregation interval sizes of loop detector data for travel time estimation and prediction [ C ]//Proceedings of the 86th Annual Meeting of Transportation Research Board. Washington DC, 2007 : 101 - 107.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部