期刊文献+

N-乙酰半胱氨酸对哮喘小鼠肺组织HMGB1、RAGE表达的影响 被引量:15

Effect of N-acetylcysteine on HMGB1 and RAGE expression in the lungs of asthmatic mice
下载PDF
导出
摘要 目的检测高迁移率族蛋白B1(HMGB1)及晚期糖基化终产物受体在小鼠哮喘模型肺组织表达及分布,以及N-乙酰半胱氨酸(NAC)对其影响。方法SPF级雌性BALB/c小鼠随机分为对照组、哮喘组及哮喘+NAC处理组,每组7只。建立哮喘模型,用RT-PCR法检测肺组织HMGB1及晚期糖基化终产物mRNA表达水平,免疫组化法检测两者在肺组织的分布。结果HMGB1mRNA表达在3组中分别为0.88±0.02,0.86±0.05,0.98±0.05;晚期糖基化终产物mRNA表达在3组中分别为1.20±0.20,1.21±0.08,1.58±0.21。相对于对照组,哮喘组的HMGB1和晚期糖基化终产物表达未发生显著性改变(P>0.05);相对于对照组和哮喘组,两者在NAC组表达均显著增加,具有统计学意义(P<0.05)。免疫组化染色可见HMGB1主要分布于支气管及肺泡上皮细胞,在细胞核、胞浆及胞膜均可见。晚期糖基化终产物主要分布于肺泡上皮,表达于胞膜上。结论HMGB1及其受体晚期糖基化终产物介导的信号转导通路可能参与哮喘气道氧化应激,但其确切的调控机制及在哮喘中的作用尚待深入研究。 Objective To investigate the expression of HMGB1 and RAGE mRNA in the lungs of asthmatic mice and the effect ofN-acetylcysteine (NAC) on their expression. Methods Twenty-one female BALB/c mice were randomly divided into control group, asthma group and NAC group (n=7). The expressions of HMGB1 and RAGE mRNA and their distributions in the lungs were detected by RT-PCR and immunohistochemical method. Results The expression levels of HMGB1 and RAGE mRNA were not significantly different between the control group (0.88±0.02 and 1.20±0.20, respectively) and the asthma model group (0.86±0.05 and 1.21±0.08, P〉0.05). After NAC treatment, both of HMGB1 and RAGE mRNA levels (0.98±0.05 and 1.58±0.21) were significantly higher than those in the other two groups (P〈0.05). HMGB1 was found in the nuclei and membrane of the bronchial and alveolar epithelial cells, and RAGE was located on the membrane of the alveolar epithelial cells. Conclusion HMGB 1 and RAGE may play a role in the oxidative stress during asthma, but the exact mechanism needs further investigation.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2008年第5期692-695,699,共5页 Journal of Southern Medical University
基金 国家自然科学基金(30270593) 中华医学会慢性呼吸道疾病专项基金(07010130021) 广东省科技计划项目(2005207007) 广东省自然科学基金(04105757)~~
关键词 哮喘 氧化应激 高迁移率族蛋白B1 晚期糖基化终产物 N-乙酰半胱氨酸 oxidative stress HMGB1 RAGE N-acetylcysteine C
  • 相关文献

参考文献19

  • 1Bowler RP. Oxidative stress in the pathogenesis of asthma[J]. Curr Allergy Asthma Rep, 2004, 4(2): 116-22.
  • 2Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead: damageassociated molecular pattern molecules and reduction/oxidation regulate immunity[J]. Immunol Rev, 2007, 220(1): 60-81.
  • 3Kokkola R, Andersson A, Mullins G, et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages [J]. Scand J Immunol, 2005, 61(1):1-9.
  • 4Ogawa EN, Ishizaka A, Tasaka S, et al. Contribution of high-mobility group box-1 to the development of ventilator-induced lung injury[J]. Am J Respir Crit Care Med, 2006, 174(4): 400-7.
  • 5沈华浩,王苹莉.支气管哮喘小鼠模型应用评价[J].中华结核和呼吸杂志,2005,28(4):284-286. 被引量:65
  • 6Blesa S, Cortijo J, Martinez-Losa M, et al. Effectiveness of oral N- acetylcysteine in a rat experimental model of asthma[J].Pharmacol Res, 2002, 45(2): 135-40.
  • 7Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products [J]. J Mol Med, 2005, 83(11): 876-86.
  • 8Schmidt AM, Yan SD, Yan SF, et al. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses[J]. J Clin Invest, 2001, 108(7): 949-55.
  • 9Kobayashi S, Kubo H, Suzuki T, et al. Endogenous secretory receptor for advanced glycation end products in non-small cell lung carcinoma[J]. Am J Respir Crit Care Med, 2007, 175(2): 184-9.
  • 10He M, Kubo H, Ishizawa K, et al. The role of the receptor for advanced glycation end-products in lung fibrosis[J].Am J Physiol Lung Cell Mol Physiol, 2007 [Epub ahead of print].

二级参考文献30

  • 1Holgate ST.Genetic and environmental interaction in allergy and asthma. J Allergy Clin Immunol, 1999,104:1139-1146.
  • 2Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci,1996,93:6025-6030.
  • 3Diatchenko L,Lukyanov S, Lau YFC, et al. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol,1999,303: 349-380.
  • 4Wang SM, Rowley JD. A strategy for genome-wide gene analysis: Integrated Procedure for gene identification. Pro Natl Sci U S A, 1998,95:11909-11914.
  • 5Shirakabe K, Yamaguchi K, Shibuya H,et al. TAK1 Mediates the Ceramide Signaling to Stress-activated Protein Kinase/c-Jun N-terminal Kinase.J Biol Chem, 1997,272:8141-8144.
  • 6Ninomiya-Tsuji J, Kishimoto K, Hiyama A,et al . The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway.Nature,1999,398:252-256.
  • 7Sakurai H, Miyoshi H, Toriumi W, et al. Functional Interactions of Transforming Growth Factor β-activated Kinase 1 with IκB Kinases to Stimulate NF-κB Activation. J Biol Chem, 1999,274:10641-10648.
  • 8Schwiebert EM, Potter ED, Hwang TH, et al. cGMP stimulates sodium and chloride currents in rat tracheal airway epithelia.Am J Physiol, 1997,272:911-922.
  • 9Ding, C, Potter ED, Qiu W,et al.Cloning and widespread distribution of the rat rod-type cyclic nucleotide-gated cation channel. Am J Physiol Cell Physiol,1999,7272:C1335-C1344.
  • 10Qiu W, Laheri A, Leung S,et al. Hormones increase mRNA of cyclic-nucleotide-gated cation channels in airway epithelia. Pflugers Arch, 2000,441:69-77.

共引文献64

同被引文献168

引证文献15

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部