期刊文献+

基于独立分量分析的高光谱图像压缩 被引量:14

Compression of Hyperspectral Image Based on Independent Component Analysis
下载PDF
导出
摘要 在对原始数据进行虚拟维数估计的基础上,提出了一种基于最大距离端元提取+独立分量分析(Independent Component Analysis,ICA)的高光谱图像有损压缩方案.该方案首先应用最大距离端元抽取法提取高光谱数据各端元矢量,然后用快速独立分量分析生成独立分量,最后使用2维分层树集合分裂(Set Partitioning In Hierarchical Trees,SPIHT)算法对各独立分量图进行编码.计算机仿真结果证明,该算法在取得高压缩率的同时,能很好地保持数据的谱特征,是一种高效的三维数据压缩方法. Based on the estimation of virtual dimensionality,a lossy compression method using independent component analysis (ICA) with given initial projection vectors is proposed. Endmember vectors are extracted using distance maximization method. Fast ICA is used and the ICA images are coded using 2-D set partitioning in hierarchical trees(SPIHT). The experimental results show that the algorithm is an efficient method. High compression ratio is achieved and the spectral characteristics are preserved.
出处 《光子学报》 EI CAS CSCD 北大核心 2008年第5期973-976,共4页 Acta Photonica Sinica
基金 国防预研基金(41321090202)资助
关键词 压缩 高光谱图像 独立分量分析 初始化 Compression Hyperspectral image Independent component analysis Initialization
  • 相关文献

参考文献9

  • 1杜培军,方涛,唐宏,陈雍业.高光谱遥感信息中的特征提取与应用研究(英文)[J].光子学报,2005,34(2):293-298. 被引量:38
  • 2吕群波,相里斌,薛彬,周锦松.高光谱图像中纯光谱提取方法[J].光子学报,2005,34(9):1336-1339. 被引量:11
  • 3邓家先.感兴趣区域提升幅度确定及编码[J].光子学报,2006,35(6):944-949. 被引量:8
  • 4吴小华,李自田,张帆.干涉超光谱图像分析与近无损压缩CPLD实现[J].光子学报,2005,34(9):1346-1350. 被引量:17
  • 5HYVARINEN A, KARHUNEN J, OJA E. Independent Component Analysis[M]. New York:Wiley,2001.
  • 6CHANG C I, DU Qian. Estimation of number of speetrally distinct signal sources in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42 (3) : 608-619.
  • 7HARSANYI J C. Detection and classification of subpixel spectral signatures in hyperspectral image sequences [D]. Baltimore : University of Maryland, 1993.
  • 8WANG J,CHANG C I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(6) : 1586-1600.
  • 9SAID A,PEARLMAN W A. A new,fast,and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1996.6(3) :243-250.

二级参考文献33

  • 1杜培军,方涛,唐宏,陈雍业.高光谱遥感信息中的特征提取与应用研究(英文)[J].光子学报,2005,34(2):293-298. 被引量:38
  • 2吴小华,李自田,张帆.干涉超光谱图像分析与近无损压缩CPLD实现[J].光子学报,2005,34(9):1346-1350. 被引量:17
  • 3De Carvalho O A, Meneses P R. Spectral Correlation Mapper (SCM): An Improvement on the Spectral Angle Mapper (SAM). Proceedings of NASA JPL AVIRIS Workshop, 2000.
  • 4Gillis D, Bowles J, Winter M E. Using endmembers as a coordinate system in hyperspectral imagery. Proc of SPIE, 2002.
  • 5Ifarraguerri A, Chang C - I. Multispectral and hyperspectral image analysis with convex cones. IEEE Trans Geos Rem Sensing, 1999,37(2): 756 ~ 770.
  • 6Heinz D,Chang C I,Althouse M L G. Fully Constrained Least-Square Based Linear Unmixing, IEEE 1999 International Geoscience and Remote Sensing Symp.,Hamburg, Germany, 1999:1401~1403.
  • 7Bowels J, Palmadesso P J, Antoniades J A, et al. Use of filter vectors in hyperspectral data analysis. Proc SPIE,1995,2553:148~ 157.
  • 8Boardman J W, Kruse F A,Green R O. Mapping Target Signatures via Partial Unmixing of AVIRIS Data, in Summaries of the VI JPL Airborne Earth Science Workshop, Pasadena, CA, 1995.
  • 9Boardman C, Curtiss A B. A Method for manual endmember selection and spectral umixing. Remote Sens Environ, 1996, 55: 229~243.
  • 10Winter M E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperpspectral data. Proc SPIE, 1999,3753: 266~275.

共引文献61

同被引文献233

引证文献14

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部