期刊文献+

照明变化人脸图像在独立成份分析空间中的分布 被引量:4

Distribution of Images of Same Face under Variant Light Conditions in Independent Component Analysis Subspace
下载PDF
导出
摘要 应用独立成份分析(ICA)方法研究了不同照明条件下同一姿势人脸的图像,并用图像在ICA空间中任意三个独立成分的组合系数模拟得出:1)强度变化的同一幅人脸图像分布在一条直线上;2)照明方向变化下的同一姿势人脸的图像按一定规则集中分布.这两个结论可以分别用来判断两幅图像是否源于同一幅图像和一幅图像是否源于照明角度变化下的同一个姿势物体. Independent component analysis (ICA) has been used to investigate the same face images under variant light conditions and three combination coefficients are randomly selected to simulate the distribution of these images in ICA subspace. Images that are originated from the same face image but with different intensities are observed to distribute along a line in the ICA subspace. And images that are originated from the same face but under different light directions are observed to distribute collectively in ICA subspace according to a certain rule. These two results can be used to effectively judge the problems of whether two images are originated from the same image and whether an image is belonged to the images of one object but under variant lighting angles,respectively.
出处 《光子学报》 EI CAS CSCD 北大核心 2008年第5期1067-1070,共4页 Acta Photonica Sinica
基金 国家自然科学基金(60277022) 教育部博士点基金(20030055022)资助
关键词 独立成份分析 照明变化 脸图像 空间分布 Independent component analysis Variant lighting conditions Face image Space distribution
  • 相关文献

参考文献21

  • 1TURK M,PENTLAND A. Eigenfaces for Recognition[J]. J Cognitive Neuroscience, 1991,3( 1 ) : 71-76.
  • 2SWETS D, WENG J. Using discriminant eigenfeatures for image retrieval[J]. IEEE Trans Pattern Analysis and Machine Intelligence,1996,18(8) :831-836.
  • 3BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1997,20 ( 7 ) : 711- 720.
  • 4COMON P. Independent component analysis-a new concept [J]. Signal Processing, 1994, ,36 : 287-314.
  • 5BARTLETT M S, MOVELLAN J R,SEJNOWSKI T J. Face recognition by independent component analysis [J]. IEEE Trans Neural Networks, 2002,13 ( 6 ) : 1450- 1460.
  • 6ADINI Y, MOSES Y, ULLMAN S. Face recognition: the problem of compensating for changes in illumination direction [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1997,19(7) :721-732.
  • 7MURASE H,NAYAR S. Visual learning and recognition of 3-d objects from appearance[J].Int'l J. Computer Vision, 1995, 14(1) :5-24.
  • 8BASRI R,JACOBS D W. Lambertian reflectance and linear subspaces[J]. IEEE Trans. Pattern Analysis and Maclline Intelligence ,2003,25(2) : 218 -233.
  • 9GEORGHIADES A S,BELHUMEUR P N,KRIEGMAN DJ. From few to many: illumination cone models for face recognition under differing pose and lighting[J]. IEEE Trans. Pattern Analysis and Machine Intelligence ,2001.23(6) :643 - 660.
  • 10WANG L, TAN T K. Experimental results of face description based on the 2nd-order eigenface method[C]. ISO/IECJTC1/ SC21/WG11/ M6001 May 2000.

二级参考文献17

共引文献11

同被引文献49

  • 1郭东明,乌秀春,王晓明,康仁科,郝平.一种适合于自由曲面快速测量的光照模型[J].机械工程学报,2002,38(z1):7-11. 被引量:3
  • 2宗光华,孙明磊,毕树生,余志伟,于靖军.宏—微操作结合的自动微装配系统[J].中国机械工程,2005,16(23):2125-2130. 被引量:17
  • 3MILAN S, VACLAV H, ROGER B. Image processing, analysis,and machine vision[M]. Brooks and Cole Publishing of Thomson. U. S. A. ,1998:622-623.
  • 4BROWN L G. A survey of image registration techniques[J]. ACM Computer Surveys, 1992,24(4) : 325-376.
  • 5GE Yang. Scale-based integrated microscopic computer vision techniques for micromanipulation and micro assembly [D]. Minnesota : the University of Minnesota, 2004.
  • 6QU Yu-Iu,PU Zhao-bang, WANG Ya-ai, et al. Desigh of self- Adapting illumination in the vision measuring system[C]. Proceedings of Second International Conference on Machine Learning and Cybernetics, Xi'an. 2003,5 : 2965-2969.
  • 7VAN J D. Image super resolution survey[J]. Image and Vision Computing,2006,24(10) : 1039- 1052.
  • 8PARK S C, PARK M K, KANG M G. Super resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003,20 ( 3 ) : 21-36.
  • 9DAVID C, ANDREW Z. Computer vision applied to super resolution[J]. IEEE Signal Processing Magazine, 2003,20 (3) :75-86.
  • 10QIN Feng-qing, He Xiao-hai, Wu Wei. Image Super resolution Reconstruction Based on Sub pixel Regislration and Iterative Back Projection [C]. Proceedings of the International Conference 2007 on Information Computing and Auto,nation ICICA (2007),2007(1):71- 74.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部