期刊文献+

数学原始概念的新选择 被引量:5

New Choice of the Primitive Concept of Mathematics
下载PDF
导出
摘要 选择元素作为数学的原始概念.元素满足基本、统一、独立、确定、分明的5条公设.元素可构成序列和集合.集合满足5条生成新公理:空起查后继、后继能加列、终结才确集、后继可永存、理想设穷竭.给出了无限集合的新定义:元素在现实中永有后继而且在理想中一个不漏的集合.用无限序列来反映无穷的进程,用无限集合来反映无穷的终结,强调两者不能混淆.还给出了5条自然数序集的生成新公理:下界0存在,正向1次序,素量n标准、后继w无限,上界∞存在.与皮亚诺公理相比,反映了数的度量性和无穷设终结.将数学哲学的研究和数学基础的建构紧密结合,力求3组公设公理的逻辑关系清楚,形式简明优美,语言通俗易懂. In this paper, element is selected as primitive concept of mathematics. The element needs to satisfy 5 postulates defined, so that element is a basic, unified, independent, definite and clearly demarcated object, on which to base sequence and set from elements. Moreover, 5 axioms of set's constructing are defined: The empty is the initial point of the set and its successor is checked; The successor can be arranged in the array. The termination of arranging can just end the set. The successor can exist forever in reality. The infinite successor can be ended in ideal. Meanwhile, new definition of infinite set is defined: The set, the arranging of its elements without one being leaked in the ideal and have successors forever in reality. The infinite sequence is used to reflect the infinite' s process and the infinite set is used to reflect the infinite's termination. The two above-mentioned are not obscure. 5 axioms of the natural number sequence-set formulation are defined newly: The 0 is the lower bound; The 1 is the basic order; The n is standard quantity; The w is infinite successor; The ∞ is the upper bound. The measurement of number and the termination of infinite should be reflected in our axiom. Studying philosophy of mathematics and constructing foundation of mathematics are connected closely, it is hoped to make a try to 3 groups of postulates and axioms be clear logic relations and concise graceful forms.
作者 温邦彦
出处 《重庆工学院学报(自然科学版)》 2008年第5期135-144,共10页 Journal of Chongqing Institute of Technology
关键词 数学哲学 数学基础 原始概念 元素 序列 集合 无穷 自然数 公理化 philosophy of mathematics foundation of mathematics primitive concept the element the set the infinite natural number axiomatization
  • 相关文献

参考文献3

  • 1[1][美JKlein F.高观点下的初等数学:第1卷[M].台北:九章出版社,1996:6-16.
  • 2[3]Wen Bartgyan.Paradoxes from the Viewpoint of the History of Mathematics[C]//International Congress of Mathemaficiam;Abstracts of Short Commtmications and Poster Sessions.Beijing:Higher Education Press,2002:407.
  • 3温邦彦.略论创新与逻辑[J].中国人民大学学报,2005,19(1):95-102. 被引量:6

二级参考文献4

  • 1黄顺基 苏越 黄展骥.逻辑和知识创新[M].北京:中国人民大学出版社,2002.3-10,27.
  • 2Wen Bangyan. Paradox from Point of View of Mathematics History[ A]. Abstracts of Communications and Poster Sessions [ C ]. ICM 2002 Beijing. 407.
  • 3M. Kline. Mathematics : The Loss of Certainty [M]. Oxford University Press, 1980. 263 - 285 , 200,长沙:湖南科学技术出版社,1997.6.
  • 4M.Kline.The Mathematics thought from Ancient to Modern Time[M].New York:Oxford University Press,1972.72;上海:上海科学技术出版社,1981.7.

共引文献5

同被引文献20

  • 1温邦彦.迎接人类文化的第三次大飞跃[J].哲学动态,1999(7):36-39. 被引量:2
  • 2温邦彦.略论创新与逻辑[J].中国人民大学学报,2005,19(1):95-102. 被引量:6
  • 3温邦彦.禁止使用自指代命题——说谎者悖论的排除和哥德尔定理的讨论[J].安徽大学学报(哲学社会科学版),2006,30(5):13-20. 被引量:5
  • 4[德]Cantor G.一般集合论基础[M]//李文林.数学珍宝.北京:科学出版社,1998:698-718.
  • 5朱学智.数学的历史、思想和方法[M].哈尔滨:哈尔滨出版社.1990:766.
  • 6[美]Kline M.数学:确定性的丧失[M].长沙:湖南科学技术出版社,1997:263-337,124-150.
  • 7徐利治.数学方法论选讲[M].武汉:华中理工大学出版社,1989.
  • 8数学手册编写组.集论和一般拓扑学,序数和基数[M]//数学手册.北京:高等教育出版社,1990:1095-1103.
  • 9[美]Cline M.古今数学思想[M].上海:上海科技出版社,1981:57-74.
  • 10[奥]Kurt.Godel,[美]Paul.L.cohen.关于连续统假设的协调性、独立性的证明[C]//张锦文,阎金童.集合论发展史.南宁:广西师范大学出版社,1993:94-122.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部