期刊文献+

基于小波和非线性指标的表面肌电信号动作特征分析 被引量:1

Characterization of surface electromyography signal based on wavelet analysis and non-linear exponent
下载PDF
导出
摘要 由于表面肌电信号的复杂性,使得寻找到适合其分类的特征是非常困难的事情,因此,特征选取在表面肌电信号的模式识别中有着决定性的作用。表面肌电信号具有非平稳,非线性的特性。小波分析是一种分析非平稳信号的有效工具,而最大Lyapunov指数已广泛应用于判定非线性指标中。文章基于小波分析和Lyapunov指数的特点,提出了算法上的改进方案,利用小波分析和最大Lyapunov指数相结合的方法对表面肌电信号进行分类识别,取得了很好的分类效果。 Due to the complexity of surface electromyography (SEMG) signal, it is difficult to find features for its classification. Thus feature extraction from SEMG signal is critical to its pattern recognition. The characteristics of non-stationary and non-linearity have been found in some researches. Wavelet analysis is effective in analyzing non-stationary signal. And the largest Lyapunov exponent was extensively used to testify the non-linearity of a system. Based on the characteristics of wavelet analysis and Lyapunov exponent, this study modified the algorithm to classify and recognize the SEMG signal by binding wavelet analysis and the largest Lyapunov exponent, which has achieved a better classification.
作者 刘南庚 雷敏
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2008年第17期3285-3288,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 上海自然基金项目资助(ZR14042) 教育部留学人员回国人员科研启动基金项目 高等学校学科创新引智计划资助(B06012)~~
  • 相关文献

参考文献13

二级参考文献57

共引文献116

同被引文献14

  • 1胡晓,李莉,任小梅,王志中.基于小波系数熵的表面肌电信号识别[J].中国医学物理学杂志,2007,24(3):212-214. 被引量:4
  • 2De Luca CJ: Surface Electromyography: Detection and Recording.1996.
  • 3MALLAT S.A Wavelet Tour of Signal Processing.2nd ed.Washingtion: Academic Press, 1999.
  • 4MALLAT S.A theory for multire solution signal decomposition:the wavelet representation.IEEE Pattern Anal and Machine Intell. 1989; 11(7):674-693.
  • 5Kilby J, Hosseini HG. Wavelet Analysis of Surface Electromyography Signals. Proceedings of the 26th Annual International Conference of the IEEE EMBS.2004;(1): 384- 387.
  • 6Raez MB, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. 2006;8(1):11-35.
  • 7Wang RC.Discussion on various methods of EMG processing for the control of prostheses//Proc.of International Conference on Biomedical Engineering.Hong Kong.1996: 341-344.
  • 8Lei M,Wang ZZ, Feng ZJ. Detecting nonlinearity of action surface EMG signal. Phys Lett A.2001; 290:297-303.
  • 9罗志增,严庭芳.基于HMM的表面肌电信号模式分类[J].华中科技大学学报(自然科学版),2008,36(4):72-75. 被引量:11
  • 10于擎,杨基海,陈香,张旭.基于BP神经网络的手势动作表面肌电信号的模式识别[J].生物医学工程研究,2009,28(1):6-10. 被引量:17

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部