期刊文献+

矿井突水信息处理的SVM-RS模型 被引量:11

Processing Predictors of Water Inrush in Coal Mines Using a SVM-RS Model
下载PDF
导出
摘要 提出了数据处理的支持向量机-粗集(SVM-RS)模型.根据原始突水样本构造SVM预测模型,对该模型依次约简部分属性做重复测试,当预测精度降低,表示该属性重要,予以保留,否则,予以约简,以此优化突水预测的属性集;利用SVM对连续的属性值进行离散化处理,以线性SVM的分类超平面确定属性值的断点位置;利用RS分析突水决策表,提取预测规则.该模型综合了SVM泛化性能优与RS分析数据、提取规则能力强的优势,在实际应用中表现良好. A Support Vector Machine using a Reduced Set (SVM-RS) is presented as a model for predicting water inrush in coal mines. At first the model was built using the raw training samples. The trained model was retested, leaving out each attribute of the training samples in order to determine which attributes improved model accuracy and, thus, should be included in the final model. In this way a more satisfactory feature space was selected for predicting water inrush. Continuous valued attributes were discretized by a linear SVM, the hyperplanes being used to locate the discrete points in attribute space. Preprocessed data were analyzed by RS and prediction rules extracted. The method is novel in integrating the advantages of SVM and RS, thereby offsetting their individual deficiencies, and is practicable and useful.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2008年第3期295-299,共5页 Journal of China University of Mining & Technology
基金 国家重点基础发展计划(973)项目(2007CB209400) 国家自然科学基金项目(40401038)
关键词 SVM RS SVM—RS 矿井突水 规则提取 SVM RS SVM-RS water inrush in coal mine rule extraction
  • 相关文献

参考文献8

二级参考文献37

  • 1姜谙男,冯夏庭.由工程实例获取隧洞围岩最大变形的支持向量机方法[J].东北大学学报(自然科学版),2004,25(8):793-795. 被引量:8
  • 2[1]V Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 3[2]Kreβel U. Pairwise classification and support vector machines [A]. Advances in Kernel Methods Support Vector Learning [C], Cambridge: MIT Press, 1999.255-268.
  • 4[3]Joachims T. Text categorization with support vector machines [R]. Dortmund: University of Dortmund,1997.
  • 5[4]Cai Y D, Liu X J, Xu X B, et al. Prediction of protein structural classes by support vector machines [J].Computers and Chemistry, 2002, 26(3). 293-296.
  • 6[5]Pawlak Z. Rough Sets-theoretical Aspects of Reasoning about Data [M]. Boston, London: Kluwer Academic Publishers, 1992. 1-53.
  • 7[6]Aleksander Ohrn. Discernibility and rough sets in medicine: Tools and applications [ D ]. Trondheim:Norwegian University of Science and Technology,1999.53,63-65.
  • 8[7]Scholkopf B, Smola A, Williamson R C, et al. New support vector algorithms [J]. Neural Computation,2000, 12(5): 1207-1245.
  • 9[8]Hsn C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 415-425.
  • 10[9]Chang C C, Lin C J. Training v-support vector classifiers: Theory and algorithms [ J ]. Neural Computation, 2001, 13(9): 2119-2147.

共引文献57

同被引文献120

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部