摘要
对于级数∑∞n=1un是否绝对收敛,我们可以用比较判别法、比值或根值判别法及它们的极限形式对∑∞n=1|un|的敛散性来进行判定,文献[1]给出了用导数判别级数绝对收敛的方法,本文对文献[1]的结论做了进一步的推广,给出了利用高阶导数判定级数绝对收敛的方法。
Using the comparison test, ratio test, or root value test, and their limit forms to judge the convergence and divergence of ∑^∞ n=1 |un|,we can get if the series ∑^∞ n=1 unis absolute convergence. The literature[1] provides the method using derivative to judge a series of absolute convergence. This paper is an extension to the conclusion of the literature [1], it provides the method that uses higher order derivative to judge a series of absolute convergence.
出处
《合肥师范学院学报》
2008年第3期21-22,共2页
Journal of Hefei Normal University
关键词
绝对收敛
导数判别法
敛散性
absolute convergence
derivative test
convergence and divergence