期刊文献+

基于主元分析的微小型飞行器视觉导航 被引量:1

Micro Air Vehicle Visual Navigation Based on Principal Component Analysis
原文传递
导出
摘要 作为一种新兴的无人机,微小型飞行器(MAV)近年来广受关注。研究微小型飞行器导航技术的关键是研究视觉导航技术在微小型飞行器中的应用。针对微小型飞行器视觉导航中的运算量大而导致算法实时性差的问题,给出了一个新的计算框架。利用主元分析技术(PCA),在最小方差意义下得到了图像的简化表示。在此简化的基础上,进行了图像特征的提取。对真实图像的实验结果表明,利用主元分析处理后的图像进行导航特征的提取,其实时性优于RGB三通道求和取平均的方法。 Micro air vehicle (MAV) is a mini-sized member of the family of unmanned aerial vehicles which receives widely attention recently. The key point in studying navigation technology of MAV is to explore the application of the visual navigation. The paper presents a new computational framework which is designed to improve the realtime-ness of the visual navigation system in MAV due to large volume of calculation. Using principal component analysis (PCA), a simplified representation of the image is obtained in the sense of minimum squared errors. Furthermore the navigational features are further calculated based on this new representation. Simulation results of the real images show that this method is of better realtime-ness than the averaging approach of RGB channels respectively.
作者 王俊涛 周宇
出处 《航空学报》 EI CAS CSCD 北大核心 2008年第B05期220-223,共4页 Acta Aeronautica et Astronautica Sinica
关键词 视觉导航 主元分析 微小型飞行器 预处理 visual navigation principal component analysis micro air vehicle pretreatment
  • 相关文献

参考文献10

  • 1Grasmeyer J, Keennon M. Development of the black widow micro air vehicle[R]. AIAA-2001-0127, 2001.
  • 2Peterson B, Henry K. Development of a micro air vehicle for maximum endurance and minimum size[R]. AIAA-2003-0416, 2003.
  • 3Jones K D, Platzer M F. Experimental investigation of the aerodynamic charateristics of flapping wing micro air vehicles[R]. AIAA-2003-0418, 2003.
  • 4Todorovic S, Nechyba M. A vision system for intelligent mission profiles of micro air vehicles [J]. IEEE Transactions on Vehicular Technology, 2004, 53(6): 1713-1725.
  • 5Gursul I, Taylor G, Wooding C L. Vortex flows over fixed-wing micro air vehicles[R]. AIAA-2002-0698, 2002.
  • 6Emblemsvag J E, Suzuki R, Candler G. Numerical simulation of flapping micro air vehicles[R]. AIAA- 2002-3197, 2002.
  • 7Haykin S. Neural networks-a comprehensive foundation[M]. 2nd ed. Beijing: Tsinghua University Press, 2001: 396-404.
  • 8Duda R, Hart P. Use of the Hough transform to detect lines and curves in pictures[R]. Technical Note 36, Artificial Intelligence Center, 1971.
  • 9Vuillemin J E. Fast linear Hough transform [C]//Proceedings of IEEE International Conference on Application Specific Array Processors. 1994: 1-9.
  • 10Guil N, Villalba J, Zapata E L. A fast Hough transform for segment detection[J]. IEEE Transactions on Image Processing, 1995, 4(11): 1541-1548.

同被引文献14

  • 1王睿,李欣,张广军.单目主动视觉无人机导引中摄像机内参数标定的线性方法[J].航空学报,2006,27(4):676-681. 被引量:9
  • 2Todorovic S,Nechyba M C.A vision system for intelligent mission profiles of micro air vehicle[J].IEEE Transactions on Vehicular Technology,2004,53(6):1713-1725.
  • 3Ettinger S M,Nechyba M C,Ifju P G,et al.Vision-guided flight stability and control for micro air vehicles[J].Advanced Robotics,2003,17(7):617-640.
  • 4Grzywna J W,Jain A,Plew J,et al.Rapid development of vision-based control for MAVs through a virtual flight testbed[C] //IEEE International Conference on Robotics and Automation.2005:3696-3702.
  • 5Pereira G A S,Iscold P,Torres L A B.Airplane attitude estimation using computer vision:simple method and actual experiments[J].Electronics Letters,2008,44(22):1303-1305.
  • 6Bao G Q,Xiong S S,Zhou Z Y.Vision-based horizon extraction for micro air vehicle flight control[J].IEEE Transactions on Instrumentation and Measurement,2005,54(3):1067-1072.
  • 7Todorovic S,Nechyba M C.Intelligent missions for MAVs:visual contexts for control,tracking and recognition[C] //IEEE International Conference on Robotics and Automation.2004:1640-1645.
  • 8Todorovic S,Nechyba M C.Multiresolution linear discriminant analysis:efficient extraction of geometrical structures in images[C] //International Conference on Image Processing.2003:1029-1032.
  • 9Fefilatyev S,Smarodzinava V,Hall L O,et al.Horizon detection using machine learning techniques[C] //5th International Conference on Machine Learning and Applications.2006:17-21.
  • 10Todorovic S,Nechyba M C,Ifju P G.Sky/ground modeling for autonomous MAV flight[C] //IEEE International Conference on Robotics and Automation.2003:1422-1427.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部