期刊文献+

高精度离散在二维快速多极子中的应用 被引量:1

Application of the high precision discretizing method to the 2D fast multipole algorithm
下载PDF
导出
摘要 文章将双共轭梯度-快速多极子(BICG-FMA)应用于二维电大导体的电磁散射问题,并对该算法进行了详细地分析,将近区作用采用零阶、二阶近似和数值积分3种不同方式处理。数值计算结果表明,近区采用二阶近似具有较高的精度和收敛速度,其计算精度与积分相当,而计算时间小于零阶近似,随着散射体电尺寸的增加,能更加有效地缩短计算时间。 The biconjugate gradient and fast multipole algorithm (BICG-FMA) is applied to analysis of electromagnetic scattering of two-dimensional electrically large conducting targets. The FMA is analyzed in detail. Matrix elements of the near field are calculated by zero-order approximation, two-order approximation and the numerical quadrature method respectively. The numerical experiments demonstrate that the accuracy and efficiency are improved by two-order approximation for the near field, and this method has more advantages when electrically large targets are concerned.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期801-804,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60671051)
关键词 快速多极算法 电磁散射 二阶近似 双共轭梯度法 fast multipole algorithm electromagnetic scattering two-order approximation biconjugate gradient method
  • 相关文献

参考文献8

  • 1Harrington R F. Field computation by moment methods [M]. 2nd ed. New York: IEEE Press,1993:42-46.
  • 2Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions[J]. J Comput Phys, 1990, 86: 414-439.
  • 3Engheta N, Murphy W D, Roklin V, et al. The fast multipole method (FMM) for electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation, 1992, 40 (6): 634-641.
  • 4Wagner R L, Chew W C. A ray-propagation fast multipole algorithm[J]. Microwave Opt Tech Lett, 1994, 7 (10): 435-438.
  • 5Lu C C, Chew W C. Fast far-field approximation for calculating the RCS of large objects[J]. Microwave Opt Tech Lett, 1995,8 (5) : 238-241.
  • 6Song J M, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[J]. Microwave Opt Tech Lett, 1995, 10 (1):14-19
  • 7许金根,宋开宏,吴先良.高阶基函数在二维散射问题中的应用[J].合肥工业大学学报(自然科学版),2007,30(11):1524-1527. 被引量:1
  • 8Chew W C,Jin J M, Michielssen E, et al. Fast and efficient algorithms in computational electromagnetics[M]. Boston: Artech House Inc Press, 2001 : 39- 52.

二级参考文献7

  • 1Harrington R F, Field computation by moment methods [M]. New York: IEEE Press, 1993:41--81.
  • 2Bleszynski E, Bleszynski M,Jaroszewics T. A fast integralequation solver for electromagnetic scattering problems [J], IEEEAP-S Seattle WA, 1994, Ⅰ: 416--419.
  • 3Chan C H, Tsang L A sparse-matrix canonical-grid method for scattering by many scatterers [J]. Microwave and Optical Technology Letters, 1995, 8 (2): 114--118.
  • 4Zhuang Y, Wu K,Wu C, et al. A combined full-wave CGFFT method for rigorous analysis of large microstrip antenna array[J]. IEEE Trans Antennas Propagation, 1996, 44: 102-- 109.
  • 5Zhao J S, Chew W C, Lu C C, et al, Thin-stratified medium fast-multipole algorithm for solving microstrip structures[J]. IEEE Trans Microwave Theory Tech, 1998, 46 : 395--403.
  • 6Sarkar T K, Salazar P M. Wavelet applications in engineering electro-magnetics[M]. London: Artech House, 2002: 71--99.
  • 7Peterson A F, Ray S L, Mittra AR. Computational methods for electro-magnetics[M]. New York: IEEE Press, 1998: 37--86.

同被引文献6

  • 1Harrington R F. Field computation by moment methods[M]. New York : IEEE Press, 1993.
  • 2Peterson A F, Ray S L, Mittra R. Computational methods for electromagnetics[M]. New York : IEEE Press, 1998.
  • 3Harrington R F. Time-harmonic electromagnetic fields[M]. New York : IEEE Press, 2001.
  • 4Xu Y S, Wang K. Discretized boundary equation method for two-dimensional scattering problems[J]. IEEE Trans. on Antenna and Propagation, 2007,55(12) :3550 - 3564.
  • 5Chew Weng Cho, Jin Jianming, Michielssen E, et al. Fast and efficient algorithms in computational electromagnetics[M]. Boston: Artech House Inc. Press, 2001.
  • 6宋开宏,吴先良,陈明生.改进的离散化方法在二维电磁散射中的应用[J].系统工程与电子技术,2008,30(1):68-70. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部