期刊文献+

一类非线性色散波方程的适定性

Well-posedness for a nonlinearly dispersive wave equation
下载PDF
导出
摘要 文章主要应用T.Kato’s方法,在加权Soblolev空间H2r,r下研究了一类非线性色散波方程的cauchy问题,得到了解的局部适定性;当r→∞时,在Schwartz空间也有相似的结论。 In this paper, by applying the method of T. Kato, the Cauchy problem is studied for a new nonlinearly dispersive wave equation in weighted Sobolev spaces H^2r,r and the local well posedness of the solution is obtained. The same is true in the Schwartz space P as r →∞.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期817-820,共4页 Journal of Hefei University of Technology:Natural Science
基金 江苏省高校自然科学研究计划项目(05KJB110018) 江苏大学高级人才基金资助项目(07JDG024)
关键词 局部适定性 柯西问题 非线性色散波方程 加权Sobolev空间H2r r Schwartz空间 local well-posedness Cauchy problem nonlinearly dispersive wave equation weighted Sobolev spaces H^2r,r Schwartz space
  • 相关文献

参考文献17

  • 1Rodriguez-Blanco G. On the Cauchy problem for the Camassa-Holm equation[J].Nonlinear Anal, 2001, 46: 309-327.
  • 2Yin Z. On the Cauchy problem for a nonlinearly dispersive wave equation[M]. J Nonl Math Phys, 2003 : 10-15.
  • 3Benjamin T B, Bona J I, Mahony J J. Model equations for long waves in nonlinear dispersive systems[J]. Phil Trans R Soc (London), 1972,272 : 47-78.
  • 4Dodd R K,Eilbeck J C,Gibbon J D, et al. Solitons and non-linear wave equations [D]. New York: Academic Press, 1984.
  • 5Camassa R, Holm D. An integrable shallow water equations with peaked solitons [J]. Phys Rev lett, 1993, 71: 1661-1664.
  • 6Johnson R S. Camassa-Holm, Korteweg-de Vries and related models for water waves[J]. J Fluid Meeh, 2002,455 : 63-82.
  • 7Fuchssteiner B, Fokas A S. Sympletic structures, their Backlund transformation and hereditary symmetries [J]. Physica, 1981, 134:47-66.
  • 8Iorio R J,Jr. On the Cauchy problem for the P, enjamin-Ono equation[J]. Comm Partial Differential Equations, 1986,11 (10):103-1081.
  • 9Lenells J. The scattering approach for the Camassa-Holm equation[J], J Nonlinear Math Phys, 2002,9 : 389-393.
  • 10Beals R, Sattinger D, Szmigielski J. Acoustic scattering and the extended Korteweg-de Vries hierarchy[J]. Adv Math, 1997,140: 190-206.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部