期刊文献+

温度对液晶填充光子晶体光纤传输特性的影响 被引量:16

Effect of Temperature on Transmission Properties in Photonic Crystal Fibers Infiltrated With Liquid Crystal
原文传递
导出
摘要 利用液晶的折射率是温度和波长函数的特性,在光子晶体光纤(PCF)芯区的空气柱中填充向列相液晶,通过改变温度来改变液晶的折射率,构成了一种温度调制光子晶体光纤。用阶跃有效折射率模型研究了温度对这种光子晶体光纤在不同光波长时传输特性的影响,并进行了数值计算。结果表明液晶填充使光子晶体光纤的色散减小,由于折射率对温度和波长变化敏感,改变温度可以使光纤在长波长区域出现单模传输,在短波长时不会出现单模传输,即使包层相对孔径很小也不会出现无截止单模传输。温度升高使光纤的色散值增大,零色散波长向短波长方向移动。这些特性对温度调制光子晶体光纤器件的设计和应用具有一定的参考意义。 Thermally tunable photonic crystal fibers (PCF) are proposed by filling the air hole of PCF core with nematic liquid crystal (LC) and using the LC refractive index change with temperature and wavelength, due to index sensitive to temperature and wavelength. The effect of temperature on PCF transmission properties is studied by the step effective index model and numerical calculation. The results show that dispersion decreases in the PCF infiltrated with liquid crystals, and the PCF appears as single-mode transmission in long wavelength but not in short wavelength, and non-cutoff-wavelength single-mode transmission does not appear even if relative hole diameters in cladding are very small. The dispersion increases and zero dispersion wavelengths shift towards short wavelengths when temperature increases in the PCF. The properties are valuable for design and application of temperature tunable PCF device.
作者 钱祥忠
出处 《光学学报》 EI CAS CSCD 北大核心 2008年第5期988-991,共4页 Acta Optica Sinica
基金 浙江省科技厅科技计划(2007C31025) 温州市科技局科技计划(GY2005037)资助课题
关键词 光子晶体光纤 液晶填充 传输特性 温度 模式 色散 photonic crystal fiber liquid crystal fill transmission properties temperature mode dispersion
  • 相关文献

参考文献12

  • 1T. T. Larsen, A. Bjarklev, D. S. Hermann et al.. Optical devices based on liquid crystal photonic bandgap fibres[J]. Opt. Exp. , 2003, 11(20) : 2589-2596
  • 2温福正,范万德,李汝成,郑金华,盛秋琴,开桂云,董孝义.基于材料填充的可调光子晶体光纤器件[J].光电子技术,2006,26(2):133-137. 被引量:2
  • 3T. R. Wolinski, K. Szaniawska, K. Bondarczuk et al.. Propagation properties of photonic crystal fibers filled with nematic liquid crystals [ J ]. Opto-Electronics Review, 2005, 13(2): 177-182
  • 4J. Sun, C. C. Chan, N. Ni. Analysis of photonic crystal fibers infiltrated with nematic liquid crystal[J]. Opt. Commun. , 2007, 278:66-70
  • 5C. S. Zhang, G. Y. Kai, Z. Wang et al.. Tunable photonic bandgap microstructure fibers filled with high index material[C]. Proc. SPIE, 2005, 6019:60193A-1-60193A-5
  • 6D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis. Photonic crystal-liquid crystal fibers for single polarization or high-birefrigence guidance[J]. Opt. Exp., 2006, 14(2): 914-925
  • 7Y. Q. Jiang, X. N. Chen, B. Howley et al.. Effect of temperature fluctuation on highly dispersive photonic crystal fiber [J]. Appl. Phys. Lett. , 2006, 88:011108-1-011108-3
  • 8J. Lin, S. T. Wu, S. Brugioni et al.. Infrared refractive indices of liquid crystals[J]. J. Appl. Phys. , 2005, 97: 073501-1-073501 5
  • 9J. Li, S. T. Wu. Extended Cauchy equations for the refractive indices of liquid crystals[J]. J. Appl. Phys., 2004, 95(3): 896-901
  • 10K. N. Park, T. Erdogan, K. S. Lee. Cladding modecouplingin long-period gratings formed in photonic crystal fibers[J]. Opt. Commun. , 2006, 266:541-545

二级参考文献32

共引文献47

同被引文献153

引证文献16

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部