摘要
研究了微分方程f(k)+Hk-1f(k-1)+…+H1f′+H0f=0的亚纯解以及它们的一阶、二阶导数与小函数的关系,其中Hj=hjePj(z)(j=0,1,…,k-1),hj是级小于n的亚纯函数,Pj(z)是n次多项式.
This paper investigates the relation between meromorphic solutions,their 1th,2th derivatives of differential equation f^(k)+Hk-1f^(k-1)+…+H1f′+H0f=0 and functions of small growth,where Hj=hjePj(z)(j=0,1,…,k-1),hj is a meromorphic function and σ(hj) 〈n,and Pj(z) is a polynomial of dergree n.
出处
《华南师范大学学报(自然科学版)》
CAS
2008年第2期7-13,共7页
Journal of South China Normal University(Natural Science Edition)
基金
广东省自然科学基金资助项目(06025059)
关键词
微分方程
收敛指数
亚纯函数
小函数
differential equation
exponent of convergence
meromorphic function
function of small growth