摘要
对于非线性三阶三点边值问题:um(t)=f(t,u(t),u′(t),u″(t))a.e.t∈[0,1],u(0)=a,u′(η) =b,u″(1) =c,建立了一个解的存在定理,其中21≤η<1 .在这个方程中,非线性项f(t,u,v,w)是一个Caratheodoly函数并且边界条件是非齐次的.主要结论是用积分表达的.
An existence theorem of solution is established for the nonlinear third-order three-point boundary value problem um(t)=f(t,u(t),u′(t),u″(t))a.e.t∈[0,1],u(0)=a,u′(η) =b,u″(1) =c,where 1/2≤η〈1 .In this problem, the nonlinear term f( t, u, v, w ) is a Carath6odory function and the boundary condition is nonhomogeneous. Main results are expressed by integral form.
出处
《吉首大学学报(自然科学版)》
CAS
2008年第2期1-4,17,共5页
Journal of Jishou University(Natural Sciences Edition)
基金
National Natural Science Foundation of China (10571085)
关键词
非线性常微分方程
非齐次边值问题
奇异性
存在性
nonlinear ordinary differential equation
nonhomogeneous boundary value problem
singularity
existence