摘要
介绍了满射多项式的基本性质,证明了:当n≥5时,对任何S0Z且|S0|=n,有E(S0,T0)=Φ.由此得到了如何构造Z[x]中的一类不可约多项式的方法:设φ(x)∈Z[x]是Z上无重根完全可约的多项式且次数大于等于5,若二次整系数多项式f(x)∈Z[x]在有理数域Q上不可约,则f(φ(x))在Q上不可约.
This paper introduces some basic properties on epimorphic polynomial. And it is concluded that if n ≥ 5 then for any S0 lohtain in Z with | S0 | = n, E(S0. r0) = Ф. Furthermore, a method of constructing some irreducible polynomials in Z [x] is obtained: suppose φ(x)E Z[x] with degree≥5 and all its roots are different integral from each other, f(φ(x)) is irreducible on Q whenf(x)EZ[x] is irreducible on Q with degree equals 2.
出处
《吉首大学学报(自然科学版)》
CAS
2008年第2期14-17,共4页
Journal of Jishou University(Natural Sciences Edition)
基金
湖南省自然科学基金资助项目(04JJ40003)
关键词
满射多项式
不可约
整数环
epimorphic polynomial
irreducible
integral ring