期刊文献+

硝基苯污染底质的微生物强化修复研究 被引量:6

Bioremediation of Nitrobenzene-polluted Sediments Using Pseudomonas putida
下载PDF
导出
摘要 采用从污染底质中分离出的可降解硝基苯的恶臭假单胞菌,对硝基苯污染底质的微生物强化修复进行了实验室和现场实验研究.该细菌在未灭菌的河水中可以硝基苯为唯一碳源生长,低温条件下(5℃),对于100 g的含有11.8 mg/kg硝基苯的污染底质,投加2 mL(10^7cells/mL)菌液可以在4 d完全降解底质中的硝基苯,实现对污染底质的强化修复.该过程中无须投加额外的氮、磷及其他的营养盐,说明污染底质中含有足够的细菌生长所需的营养物质.在使用河水和底质的现场实验中,当底质和河水中的硝基苯初始浓度在7-8 mg/kg、50-61 mg/L之间时,投加硝基苯降解菌可使底质和河水中硝基苯的降解时间缩短了40 h以上,河水中的硝基苯先于底质中的硝基苯被细菌所降解. Bioremediation of nitrobenzene-polluted sediments was studied through lab-scale and in situ experiments.The polluted sediments were remediated through the addition of bacterial separated from the sediments,even at a low temperature of 5℃.Nitrobenzene at a concentration of 11.8 mg/kg was biodegraded within 4 d with the addition of 2 mL cell solution(10^7cells/mL.) No extra nutrients were needed for the bioremediation process,showing that enough nutrients existed in the sediments.For the in situ bioremediation experiment,the initial nitrobenzene concentrations at solution and sediments were 50-61mg/L and 7-8mg/L respectively.The remediation process was also enhanced through cell addition. The above mentioned nitrobenzene was biodegraded within 48 h,compared with 96 h without cells presence.Nitrobenzene in solution was removed preferentially than those in sediments.
出处 《环境科学》 EI CAS CSCD 北大核心 2008年第6期1632-1637,共6页 Environmental Science
基金 中国博士后基金项目(20070410535) 水文水资源与水利工程科学国家重点实验室开放基金项目(2006412411)
关键词 硝基苯 污染底质 生物修复 恶臭假单胞菌 nitrobenzene polluted sediments bioremediation Pseudomonas putida
  • 相关文献

参考文献14

  • 1戴友芝,张选军,宋勇.超声波/纳米铁协同降解氯代苯酚的试验[J].环境污染治理技术与设备,2005,6(11):19-22. 被引量:11
  • 2蒋小欣,阮晓红,邢雅囡,赵振华.城市重污染河道上覆水氮营养盐浓度及DO水平对底质氮释放的影响[J].环境科学,2007,28(1):87-91. 被引量:55
  • 3籍国东,倪晋仁,孙铁珩.持久性有毒物污染底泥修复技术进展[J].生态学杂志,2004,23(4):118-121. 被引量:25
  • 4Lyons T, lckes J A, Majar V S, et al. Evaluation of Contaminant Resuspension Potential during Cap Placement at Two Dissimilar Sites [J]. Journal of Environmental Engineering-ASCE, 2006, 132 (4) : 505-515.
  • 5Liu C H, Jay J A, Ford T E, et al. Evaluation of Environmental Effects on Metal Transport from Capped Contaminated Sediment under Conditions of Submarine Groundwater Discharge [ J ]. Environmental Seienee and Technology, 2001, 35(22) : 4549-4555.
  • 6Simpson S L, Payer I D, Mewburn B R, et al. Considerations for Capping Metal-Contaminated Sediments in Dynamic Estuarine Environments[J]. Environmental Science and Technology, 2002, 36 (17) : 3772-3778.
  • 7Jacobs P H, Rstner U F. Concept of subaqueous capping of contaminated sediments with active barrier systems using natural and modified zeolites[J]. Water Re.arch, 1999, 33 (9): 2083-2087.
  • 8Jouanneau Y, Willison J C, Meryer C, et al. Stimulation of Pyrene Mineralization in Freshwater Sediments by Bacterial and Plant Bioaugmentation[J]. Environmental Science and Technology, 2005, 39 (15) : 5729-5735.
  • 9Brenner R, Majar V S, Ickes J A, et al. Long-Term Recovery of PCB-Contaminated Surface Sediments at the Sangamo-Weston/ Twelvemile Creek/Lake Hartwell Superfund Site [ J ]. Environmental Science and Technology, 2004, 38(8): 2328-2337.
  • 10Pakdeesusuk U, Lee C M, Coats J T, et al. Assessment of Natural Attenuation via in Situ Reductive Dechlorination of Polychlorinated Biphenyls in Sediments of the Twelve Mile Creek Arm of Lake Hartwell, SC[J]. Environmental Science and Technology, 2005, 39 (4) : 945-952.

二级参考文献60

  • 1吴群河,曾学云,黄钥.溶解氧对河流底泥中三氮释放的影响[J].环境污染与防治,2005,27(1):21-24. 被引量:31
  • 2尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学,1994,6(3):240-244. 被引量:137
  • 3范成新.滆湖沉积物理化特征及磷释放腄?[J].湖泊科学,1995,7(4):341-350. 被引量:85
  • 4[8]Anon. 2002. Restoration of aquatic macrophyte vegetation in acidified and eutrophicated shallow soft water wetlands in the Netherlands[J].Hydrobiologia, 478(15): 171 ~ 180.
  • 5[9]Anon. 2002. The state of the art of aquatic and semi-aquatic ecological restoration projects in the Netherlands[J]. Hydrobiologia, 478(15) :219~233.
  • 6[10]Aronstein BN, et al. 1993. Effect of a non-ionic surfactsnt added to the soil surface on the biodsgradation of aromafie hydrocarbons within the soil[J]. Appl. Microb. Biotechnol., 39(3): 386~ 390.
  • 7[11]Blum M, et al. 2001. Mercury in water and sediment of Steamboat Creek, Nevada: Implications for stream restoration[J]. J.Amer. Water Resour. Assoc., 37(4) :795~804.
  • 8[12]Dominic MD. 1990. Toxicity of Cadmium in Sediments: the Role of Acid Volatile Sulfide[J]. Environ. Toxicol. Chem., 9(1):1487~ 1502.
  • 9[13]Garbsciak SJ, et al. 1995. Field demonstrations of sediment treatment technologies by the USEPA's Assessment and Remediation of Contaminated Sediments (ARCS) program[J]. ASTM, 1293: 145~154.
  • 10[14]He Pinjing.2001.Research on a clean-up and disposal process of polluted sediments from urban rivers[J]. J. Environmental Sciences in English, 134: 435 ~ 438.

共引文献305

同被引文献151

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部