期刊文献+

融合人运动模式分析的服务机器人和谐导航 被引量:1

Harmonious navigation mechanisms utilizing motion patterns of people
下载PDF
导出
摘要 提出一种学习人典型运动模式的方法,并利用该方法对环境中的人的行为做出预测,协调机器人以达到与人和谐共处的导航目的.算法首先通过非重叠多摄像头采集人在环境中不同地点间的运动轨迹;其次,应用两层模糊K均值算法分别对这些运动轨迹进行空间和时间序列上的分类,并利用TSC标准对每一次分类结果进行评估;然后建立每一聚类运动模式的概率方程,依此实现对摄像头网络观测下人运动行为的预测,进而调整机器人的导航策略以达到与人和谐共处的导航目的.实验展示了该算法能够快速地利用人的运动调整其导航行为. A technique for learning collections of trajectories that characterize representative motion patterns of persons is proposed, and this algorithm is applied to predict the motions of persons and direct the robot to harmoniously coexist with people. Data recorded with a camera network is clus- tered hierarchically using fuzzy K-means algorithm based on spatial and temporal information respectively, and the quality of each clustering results is evaluated by the tightness and separation criterion (TSC). Then each motion pattern is represented with a chain of Gaussian distributions. As a result, whenever the camera network detects a person it computes a probabilistic estimate about which motion pattern the person might be engaged in. During path planning the robot then uses this belief to improve its navigation behavior. Practical experiments demonstrate that our approach allows a robot to quickly adapt its navigation plans according to the activities of the persons.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期401-406,共6页 Journal of Southeast University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2006AA040202 2007AA041703).
关键词 模糊K均值算法 运动模式 和谐导航 多摄像头跟踪 fuzzy K-means algorithm motion patterns harmonious navigation multi-camera tracking
  • 相关文献

参考文献12

  • 1Nonaka S, Inoue K, Arai T. Evaluation of human sense of security for coexisting robots using virtual realty [ C ]//Proceedings of the IEEE Int Conf on Robotics and Automation. New Orleans, LA, 2004: 2770- 2775.
  • 2Bennewitz M, Burgard W, Cielniak G, et al. Learning motion patterns of people for compliant robot motion [J]. The International Journal of Robotics Research, 2003,24(1) : 31 -48.
  • 3Junejo I N, Javed O, Shah M. Multi feature path modeling for video surveillance [ C ]//Proceeding of the IEEE Int Conf Pattern Recognition. Washington, USA, 2004: 710-719.
  • 4Schulz D, Burgard W, Fox D, et al. Tracking multiple moving targets with a mobile robot using particle filters and statistical data association [ C ]//Proceeding of the IEEE Int Conf on Robotics and Automation. Seoul, Korea, 2001 : 1665 - 1670.
  • 5Kluge B, Kohler C, Prassler E. Fast and robust tracking of multiple moving objects with a laser range finder [C]//Proceeding of the IEEE Int Conf on Robotics and Automation. Seoul, Korea, 2001 : 1683 - 1688.
  • 6Hu W, Xie D, Tan T. Learning patterns of activity using fuzzy self-organizing neural network [ J ]. IEEE Tran System, Man and Cybernetics-Part B, 2004,34(3) : 1618 - 1626.
  • 7Xie X, Beni G. A validity measure for fuzzy clustering [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1991,13(8) :841 - 847.
  • 8Bennewitz M, Burgard W, Thrun S. Exploiting constraints during prioritized path planning for teams of mobile robots [ C ]//Proceedings of the IEEE Int Conf on Intelligent Robots and Systems. Maui, USA, 2001 : 393 - 398.
  • 9Nam T. Nguyen,Svetha Venkatesh,Geoff West,Hung H. Bui.监控系统中的多摄像机协同(英文)[J].自动化学报,2003,29(3):408-422. 被引量:10
  • 10Simmons R. The inter-process communication system [EB/OL]. [2007-10 ]. http://www-2. cs. cmu. edu./ afs/cs/project/TCA/www/ipc/ipc. html.

二级参考文献23

  • 1Intille S S, Davis J W, Bobick A F. Real-time closed-world tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, San Juan: IEEE Press, 1997. 697-703.
  • 2Wren C, Azarbayeiani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):780- 7875.
  • 3Boult T. Frame-rate multibody tracking for surveillance. In: Proceedings of DARPA Image Understanding Workshop, DARPA/ISO, Morgan Kaufmann Publishers, Inc., 1998.305-313.
  • 4Haritaoglu I, Harwood D- Davis L S. w4: Real time surveillance of people and their activities. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2000,22(8) :809-830.
  • 5Rehg J, Loughlin M, Waters K. Vision for a smart Kiosk. In: IEEE Conference on Computer Vision and Pattern Recognition, San Juan: IEEE Press, 1997. 690-696.
  • 6Azabrayjani A, Wren C. Pentland A. Real-time 3d tracking of the human body. In: Proceedings of IMAGE'COM, Bordeaux,1996.
  • 7Collins R, Lipton A, Fujiyoshi H, Kanade T. Algorithms for cooperative multi-sensor surveillance. Proceedings of the IEEE, 2001,89(10): 1456-1477.
  • 8Stauffer C, Grimson E. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Recognition and Machine Intelligence, 2000,22(8):747-757.
  • 9Olson T, Brill F. Movingobject detection and event recognition algorithms for smart cameras. In:Proceedings of DARPA Image Understanding Workshop, 1997. 159- 175.
  • 10Shafer A, Krumm J, Brumitt B, Meyers B, Czerwinski M, Robbins D. The new EasyLiving project at Microsoft.In: Proceedings of DARPA/NIST Smart Spaces Workshop, Gailhersburg, 1998.

共引文献9

同被引文献10

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部