期刊文献+

聚氨酯弹性体电致伸缩特性 被引量:2

Electrostrictive properties of polyurethane elastomers
下载PDF
导出
摘要 为了提高材料的电致伸缩特性,通过原位共聚合法在聚氨酯弹性体(PUE)中掺入了不同质量比例的纳米钛酸钡.采用LCR测试仪、邵氏硬度计和电容法电致伸缩特性测试装置研究了纳米钛酸钡掺杂对PUE的影响.试验结果表明:随着掺杂比例的提高,PUE的介电系数和硬度增加,回复速度变差;较低的掺杂能提高PUE的电致伸缩应变,过高的掺杂导致PUE电致伸缩特性下降,掺杂6%钛酸钡的PUE表现出最佳电致伸缩应变.进一步对PUE电致伸缩特性因素进行了理论分析并提出了电致伸缩弹性体电荷迁移逾渗模型,其很好地解释了电致伸缩材料弯曲、临界电场反转膨胀、高掺杂回弹等现象. For increasing the electrostrictive properties of materials, different mass proportion BaTiO3/polyurethane nanocomposite elastomers(PUE) are prepared. LCR test instrument, Shore hard- ness test instrument and capacitive electrostrictive properties test device are used to test the effect of doped PUE. The results show that, with the increase of doped proportion, the dielectric constant and the hardness increase but restoration speed decreases. It is found that low content doping can increase the electrostrictive strain of the PUE, while more doping will depress the electrostrictive strain. PUE with 6% content shows a greastest electrostrictive strain. The charge transference percolation model (CTPM) is proposed which can explain bending, critical electric field reverse expanding, and high doping spring phenomena of BaTiO3/PU nanocomposite elastomers.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期439-443,共5页 Journal of Southeast University:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK2003063)
关键词 纳米复合物弹性体 聚氨酯 钛酸钡 电荷迁移逾渗模型 电致伸缩 nanocomposite elastomer polyurethane barium titanate charge translerence percola- tion model electrostriction
  • 相关文献

参考文献14

  • 1Ma Zhenyi, Scheinbeim J I, Newman B A, et al. High field electrostrictive response of polymers [J]. J Appl Sci, Part B: Polym Phys, 1994,32(8) :2721 -2731.
  • 2Wang H, Zhang Q W, Cross L E, et al. Origins of electromechanical response in polyurethane elastomers [C]//IEEE International Symposium on Application of Ferroelectrics. IEEE Press, 1994,8 : 182 - 185.
  • 3Su J, Kim C H, Kugel V D, et al. Temperature-frequency dependence of electrostrictive properties of a polyurethane elastomer [C]//IEEE International Symposium on Application of Ferroelectrics. IEEE Press, 1996, 2:927 - 930.
  • 4Watanabe M, Hirai T, Suzuki M, et al. Electric conduction in bending electrostriction of polyurethanes [J]. Appl Phys Lett,1999 ,74(18) :2717 -2719.
  • 5Zhou Y, Wong W, Shin F G. Mechanism of bending electrostriction in thermoplastic polyurethane [J]. J Appl Phys, 2004,96 ( 1 ) : 294 - 299.
  • 6Guillot F M, Balizer E. Electrostrictive effect in polyurethanes [J]. J Appl Polym Sci,2003,89 (4) : 399 - 404.
  • 7丛羽齐.具电致伸缩性能聚氨酯弹性体的制备与性能[D].南京:东南大学化学化工学院,2005.
  • 8Su J, Zhang Q W, Kim C H, et al. Effects of transitional phenomena on the electric field induced strainelectrostrictive response of a segmented polyurethane elastomer[J]. J Appl Polym Sci,1997,65(7): 1363 - 1370.
  • 9Su J, Zhang Q M. Space-charge-enhanced electromechanical response in thin-film polyurethane elastomers [J]. Appl Phys Lett,1997 ,71( 3 ) :386 -388.
  • 10Lam K S, Zhou Y, Wong Y W, et al. Electrostriction of lead zirconate titanate-polyurethane composites [J]. Journal of Applied Physics, 2005,97 ( 5 ) : 104112.

二级参考文献2

  • 1Ma Z,J Polym Sci B Polym Phys,1994年,32卷,2721页
  • 2Bhalla A S,Ferroelectrics,1981年,33卷,139页

共引文献2

同被引文献37

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部