期刊文献+

基于时频分析的机械设备非平稳信号盲分离 被引量:13

BLIND SEPARATION OF NON-STATIONARY SIGNALS IN THE MECHANICAL EQUIPMENT BASED ON TIME-FREQUENCY ANALYSIS
下载PDF
导出
摘要 针对传统的机械故障源分离方法忽略信号非平稳性的不足,结合时频分析和盲源分离的各自优点,提出一种基于时频分析的机械设备非平稳信号的盲分离方法,并与传统的机械故障源分离方法进行对比。实验结果表明,对于机械设备非平稳混迭信号,必须充分利用信号的非平稳性,才能达到很好的分离效果。文中的研究为机械设备非平稳混迭信号的分离提供一种新方法。 The traditional blind source separation of machine faults is usually neglected the nonstationarity of fault signals. Based on this deficiency, here, combined the advantage of time-frequency analysis (TFA) and blind source separation (BSS), a blind separation method of non-stationary signals in the mechanical equipment based on time-frequency distributions, which is named the TFA-BSS method, is proposed. The proposed method is compared with the traditional separation method of machine fault sources. The experiment results show that non-stationarity is fully considered in the separation of the machine faults. This research provides a new method for the blind separation of non-stationary mixture signals in the mechanical equipment.
出处 《机械强度》 EI CAS CSCD 北大核心 2008年第3期354-358,共5页 Journal of Mechanical Strength
基金 国家自然科学基金(50775208) 河南省教育厅自然科学基金(2006460005) 河南省杰出人才创新基金(0621000500)资助项目~~
关键词 盲源分离 时频分析 故障诊断 非平稳信号 Blind source separation (BSS) Time-frequency analysis (TFA) Fault diagnosis Nonstationary signal
  • 相关文献

参考文献10

  • 1李熠,何永勇,李志农,褚福磊.盲源分离和小波消噪在碰摩声频信号分析中的应用研究[J].机械强度,2005,27(6):719-724. 被引量:9
  • 2吴军彪,陈进,伍星.基于盲源分离技术的故障特征信号分离方法[J].机械强度,2002,24(4):485-488. 被引量:34
  • 3Belouchrani A, Amin M. Blind source separation based on time-frequency signal representations[J]. IEEE Trans. on Signal Processing, 1998, 46(11) : 2888-2897.
  • 4Leyman A R, Kamran Z M, Abed-Meraim K. Higher-order time frequency-based blind source separation technique[J]. Signal Processing Letters, IEEE, 2000, 7(7): 193-196.
  • 5Holobar A, Fevotte C, Doncarli C, Zazula D. Single autotenns selection for blind source separation in time-frcquency plane[ C/OL]// Proc.11th European Signal Processing Conference ( EUSIPCO ' 02 ). Toulouse, France: [s.n.] 2002: 565-568[2003-10-20]. http: //www. tsi. enst. fr/-fevotte/.
  • 6刘琚,杜正锋,梅良模.基于Wigner-Ville分布的非平稳信号盲分离[J].山东大学学报(理学版),2003,38(1):73-75. 被引量:8
  • 7Sharon Karako-Eilon, Arie Yeredor, David Mendlovic. Blind source separation based on the fractional fourier transform[ C ] // The 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003) : Nara, Japan. Nara: Nara Convention Bureau, 2003: 615-620.
  • 8Cardoso J F, Souloumiac A. Blind beamfonning for non-Gaussian sisals [J]. Radar and Signal Processing, lEE Proceedings F, 1993, 140(6) : 362-370.
  • 9张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,2002.12-72.
  • 10Ypma A. Learning methods for machine vibration analysis and health monitoring [ D ]. Delft: Delft University of Technology, ISBN 90- 9015310-1, 2001: 7-26.

二级参考文献29

  • 1Ali MANSOUR, Allan Kardec BARROS , Noboru OHNISHI.Blind Separation of Sources: Methods, Asstanptiom and Applicatiom[J]. Ieice Tram Fundamentals, 2000; E83-A (8):161.
  • 2Jutten C, Heroult J. Blind separation of sources, Part I: Anadaptive algorithm based on neuromimefic architecture[J]. Signal Processing, 1991; 24:1-10.
  • 3Moreau E, Thirion-Moreau N. Non symmetrical contrasts forsource separation[J]. IEEE Trans Signal Processing, 1999; 78(8) : 2241-2253.
  • 4Cardoso J F. Infomax and maximmn likelihood for blind source separation[ J]. IEEE Signal Processing Letters, 1997;4 (4) :112-114.
  • 5Belouchrani A, Amin M G. Blind source sepmmion based on time-frequency signal relxesentafiom[J]. IEEE Transactions on Signal Processing, 1998; 46(11): 2888-2897.
  • 6Tong L, Liu R, Soon V C, et al. Indeteminacy and Identifiability of Blind Identification[J]. IEEE Tram on Circuits and systems, 1991; 38(5): 499-506.
  • 7Cohen L. Time-Frequency Analysis[M]. Englewood Cliffs,NJ: PrenticeHall, 1995.
  • 8Cardoso J F. Blind Beamforming for Non-Gaussian Signals[J]. IEE Proceeclings-F, 1993;140 (6): 362-370.
  • 9Belouchrani A, Abed-Meraim K, Cardoso J F, Moulines E. A blind source separation technique using second-order statistics[J].IEEE Transactions on Signal Processing, 1997; 45(2):434-444.
  • 10Gelle G, Colas M, Delaunay G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis. Mechanical Systems and Signal Processing,2000, MSSP-14(3):427 ~ 442.

共引文献48

同被引文献119

引证文献13

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部