期刊文献+

微通道周期流动电位势及电粘性效应 被引量:8

Periodical Streaming Potential and Electro-Viscous Effects in Microchannel Flow
下载PDF
导出
摘要 求解了双电层的Poisson-Boltzmann方程和流体运动的Navier-Stokes方程,得到在周期压差作用下,二维微通道的周期流动电位势,流动诱导电场和液体流动速度的解析解.量纲分析表明,流体电粘性力与以下3个参数有关:1)电粘性数,它表示定常流动时,通道最大电粘性力与压力梯度的比;2)形状函数,它表示电粘性力在通道横截面的分布形态;3)耦合系数,它表示电粘性力的振幅衰减特征和相位差.分析结果表明,微通道周期流动诱导电场、流动速度与频率Reynolds数有关.在频率Reynolds数小于1时,流动诱导电场随频率Reynolds数变化很慢.在频率Reynolds数大于1时,流动诱导电场随频率Reynolds数的增加快速衰减.在通道宽度与双电层厚度比值较小情况下,电粘性效应对周期流动速度和流动诱导电场有重要影响. An analytical solution of periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in two-dimensional uniform microchannel based on Poisson- Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow was present- ed. Dimensional analysis indicates that electric-viscous force depends on three factors: 1) Electricviscous coefficient representing a ratio of maximum of electric-viscous force to pressure gradient in steady state; 2) Profile function describing distribution profile of electrio-viscous force in channel sec- tion; 3) Coupling coefficient reflecting behavior of the amplitude damping and the phase offset of electro-viscous force. Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number. Flow-induced electric field varies very slowly when frequency Reynolds number is less than 1, and rapidly decreases when frequency Reynolds number is larger than 1. Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.
出处 《应用数学和力学》 EI CSCD 北大核心 2008年第6期649-656,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10472036)
关键词 流动电位势 流动诱导电场 频率Reynolds数 电粘性效应 steaming potential flow-induced electric field frequency Reynolds number electro-viscous effect
  • 相关文献

参考文献4

二级参考文献33

  • 1聂德明,林建忠,石兴.弯管电渗流场的数值模拟及研究[J].分析化学,2004,32(8):988-992. 被引量:6
  • 2李志华,林建忠,聂德明.消除毛细管电泳槽道中弯道导致的扩散效应的新方法[J].应用数学和力学,2005,26(6):631-636. 被引量:8
  • 3Culbertson C T, Jacobson S C, Ramsey J M. Dispersion sources for compact geometries on microchip[ J]. Analytical Chemistry, 1998,70(18) :3781-3789.
  • 4Paegel B M, Lester D H, Simpson P C, et al. Turn geometry for minimizing band broadening in microfabricated capillary electrophoresis channels[ J]. Analytical Chemistry, 2000,72(14): 3030-3037.
  • 5Molho J I, Herr A E, Mosier B P, et al. Optimization of turn geometries for microchip electrophoresis[J]. Analytical Chemistry ,2001,73(7): 1350-1360.
  • 6Qiao R, Aluru N R. Dispersion control in nano-channel systems by localized zeta-potential variations[ J ]. Sensors and Actuators A: Physical, 2003,104(3) :268-274.
  • 7Schwer C, Kenndler E. Electrophoresis in fused-silica capillaries-the influence of organic-solvents on the electroosmotic velocity and the zeta-potential[ J]. Analytical Chemistry, 1991,63( 17):1801-1807.
  • 8Moseley M A, Deterding L J, Tomer K B, et al. Determination of bioactive peptides using capillary zone electrophoresis mass-spectrometry[ J]. Analytical Chemistry, 1991,63(2): 114-120.
  • 9Johnson T J, Ross D, Gaitan M, et al. Laser modification of performed polymer microchannels: ap-plication to reduced band broadening around turns subject to electrokinetic flow[J ]. Analytical Chemistry, 2001,73(15): 3656-3661.
  • 10Hayes M A. Extension of external voltage control of electroosmosis to high-pH buffers[ J]. Analytical Chemistry, 1990,71(17) :3793-3798.

共引文献31

同被引文献124

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部