期刊文献+

三点边值问题的正解 被引量:3

Positive Solutions of Three-Point Boundary Value Problems
下载PDF
导出
摘要 利用Krasnoselskii’s不动点定理和重合度定理,研究了p-Laplace三点边值问题单解或多解的存在性,以及在共振情况下解的存在性. The existence of single or multiple positive solutions of three-point boundary value problems involving one dimensionl p-Laplacian was considered. Then the existence of solution when the problems is in resonance case was studied. The approach is based on the Krasnoselsldi' s fixed point theorem and the coincidence degree theory.
出处 《应用数学和力学》 CSCD 北大核心 2008年第6期741-748,共8页 Applied Mathematics and Mechanics
关键词 三点边值问题 正解 不动点定理 重合度定理 three-point boundary value problems positive solution fixed point theorem coincidence degree theory
  • 相关文献

参考文献9

  • 1Yang X J. Positive solutions for the one dimensional p-Laplacian[ J]. Mathematical and Computer Modelling ,2002,35(1/2) : 129-135.
  • 2Agarwal R P, Lu H S, O' Regan D. Eigenvalues and the one-dimensional p-Laplacian[ J]. J Math Anal Appl, 2002,266(2) :384-400.
  • 3Lu H S, O' Regan D, Zhong C K. Multiple positive solutions for the one-dimensional singular p-Laplacian} [J]. Appl Math Compute ,2002,133(2/3) :407-422.
  • 4Wong F H. Existence of positive solutions for m-Laplacian boundary value problems[ J]. Appl Math Letters, 1999,12(3) : 11-17
  • 5Feng W Y. On an m-point boundary value problem[J].Nordinear Anal TMA, 1997,30(8):5369- 5374.
  • 6Ma R Y. Positive solutions of a nonlinear three-point boundary value problem[ J] .Electronic J Differential Equations, 1999,1999(34) : 1-8.
  • 7Liu B. Positive solution of singular three-point boundary value problems for the one-dimensional p- Laplacian[ J]. Comput Math Appl, 2004 , 48( 5/ 6 ) : 913-925.
  • 8Mawhin J. Topological Degree and Boundary Value Problems for Nonlinear Differential Equations [ M]. Lecture Notes in Mathematics. Vol 1537. New York/Berlin, 1991.
  • 9Bai C Z, Fang J X. Existence of positive solutions for three-point boundary value problems at resonance[ J]. J Math Anal Appl, 2004,291(2) : 538-549.

同被引文献16

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部