期刊文献+

学习理论综述(I):稳定性与泛化性 被引量:4

A Survey on Learning Theory (I): Stability and Generalization
下载PDF
导出
摘要 本文综述学习理论的新进展:学习算法稳定性与泛化性的近期研究结果。对现有主要的稳定性研究框架,如假设稳定、逐点假设稳定、一致稳定、几乎处处稳定和CVEEEloo稳定等的异同进行了比较,并进而指出学习算法稳定性及泛化性研究存在的其它亟待解决的问题。 The recent developments and achievements on the learning theory: stability and generalization of learning algorithm are reviewed in this paper. The similarities and differences among the existing stability theory such as hypothesis stability, pointwise stability, uniform stability, almost everywhere stability and CVEEE1oo stability are compared. Furthermore, a series of open questions on stability and generalization are also discussed.
作者 张海 徐宗本
出处 《工程数学学报》 CSCD 北大核心 2008年第1期1-9,共9页 Chinese Journal of Engineering Mathematics
基金 国家重点基础研究计划(973)(2007CB311002) 国家自然科学基金重点项目(70531030)
关键词 学习理论 算法稳定性 泛化 数据样本 learning theory stability generalization data sample
  • 相关文献

参考文献19

  • 1Vapnik V, Chervonenkis A. The necessary and sufficient conditions for consistency in the empirical risk minimization method[J]. Pattern Recognition and Image Analysis, 1991, 1(3): 283-305.
  • 2Vapnik V. Statistical Learning Theory[M]. New York: Wiley, 1998.
  • 3Alon N, et al. Scale-sensitive dimensions, uniform convergence, and learnability[J]. Journal of the Association for Comouting Machinery, 1997. 44(4): 615-631.
  • 4Dudley R. Uniform Central Limit Theorems[M]. Cambridge: Cambridge University Press, 1999.
  • 5Dudley R, et al. Uniform and universal Glivenko-Cantelli classes[J]. Journal of Theory Probability, 1991, 4:485-510.
  • 6Cuker F, Smale S. On the mathematical foundations of learning[J]. Bulletin of the American Mathematical Society, 2002, 39:1-49.
  • 7Poggio T, Smale S. The mathematics of learning: dealing with data[J]. Notices of the American Mathematical Society, 2003, 50:537-544.
  • 8Devroye L P, Wagner T J. Distribution-free performance bounds for potential function rules[J]. IEEE Transanction on Information Theory, 1979, 25(5): 601-604.
  • 9Kearns M, Ron D. Algorithmic stability and sanity check bounds for leave one out cross validation bounds[J]. Neural Computation, 1999, 11(6): 1427-1453.
  • 10Bousquet O, Elisseeff A. Stability and generalization[J]. Journal of Machine Learning Research, 2002, 2: 499-526.

同被引文献58

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部