摘要
本文综述学习理论的新进展:学习算法稳定性与泛化性的近期研究结果。对现有主要的稳定性研究框架,如假设稳定、逐点假设稳定、一致稳定、几乎处处稳定和CVEEEloo稳定等的异同进行了比较,并进而指出学习算法稳定性及泛化性研究存在的其它亟待解决的问题。
The recent developments and achievements on the learning theory: stability and generalization of learning algorithm are reviewed in this paper. The similarities and differences among the existing stability theory such as hypothesis stability, pointwise stability, uniform stability, almost everywhere stability and CVEEE1oo stability are compared. Furthermore, a series of open questions on stability and generalization are also discussed.
出处
《工程数学学报》
CSCD
北大核心
2008年第1期1-9,共9页
Chinese Journal of Engineering Mathematics
基金
国家重点基础研究计划(973)(2007CB311002)
国家自然科学基金重点项目(70531030)
关键词
学习理论
算法稳定性
泛化
数据样本
learning theory
stability
generalization
data sample