期刊文献+

紧支撑最小能量框架的构造(英文) 被引量:3

The Construction of Minimum-energy Frames with Compact Support
下载PDF
导出
摘要 本文研究了对应于紧支撑加细函数的最小能量框架,并得到了最小能量框架存在的准则,该准则是建立在加细函数的Laurent多项式符号上的不等式。其次给出了显式构造最小能量框架的公式。最后构造出了数值算例。 We study minimum-energy frames with compact supports which correspond to some refinable functions with compact supports, and we give a precise existence criterion for minimum-energy frames in terms of an inequality condition on the Laurent polynomial symbols of the refinable functions. A explicit formula for constructing minimum-energy frame is also presented. Finally, numerical examples are given.
出处 《工程数学学报》 CSCD 北大核心 2008年第1期155-164,共10页 Chinese Journal of Engineering Mathematics
基金 Science and Technique Foundation of Ningxia higher School Science Foundation of North University for Nationalitier (2007Y043)
关键词 最小能量紧框架 紧支撑 Laurent多项式符号 加细函数 minimum-energy tight frame compact support Laurent polynomial symbol refinable functions
  • 相关文献

参考文献7

  • 1Chui C K, He W J, Compactly supported affine frames associtated with refinable function[J], Applied and Computational Harmonic Analysis, 2000, 8:293-319.
  • 2Han B. On dual wavelet tight frames[J]. Applied and Computational Harmonic Analysis, 1997, 4:380-413.
  • 3Lanton W. Tight frames of compactly supported affine wavelets[J]. J Math Phys, 1990, 31:1898-1901.
  • 4Petukhov A. Explicit construction of frameletsIJ]. Applied and Computational Harmonic Analysis, 2001. 8:313-327.
  • 5Ron A, Shen Z. Compactly supported tight affine spline frames in L2(R^d)[J]. Math Comp, 1998, 67:191-207.
  • 6Cui Lihong, Cheng Zhengxing, Yang shouzhi. Explicit structure of wavelet tight frames[J]. Acta Mathematica Scientia, 2004, 24:94-104.
  • 7Lawton W, Lee S L, Shen Z. An algorithm for matrix extension and wavelet construction[J]. Math Comp, 1996, 65:723-737.

同被引文献6

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部