摘要
本文研究求解Banach空间中非线性算子方程的割线法在Mysovskii型条件下的半局部收敛性问题,在一阶差商Hlder连续和逆有界的假设下,建立了相应的收敛性定理,给出了误差估计,最后用数值例子说明所得结果的应用。
The Mysovskii-type condition is considered in this study for the secant method in Banach spaces for solving a nonlinear operator equation. It is assumed that the divided difference of order one is Holder continuous and its inverse is bounded. A semilocal convergence theorem is established, and a error estimate formula is given. Finally, an example is provided to show the application of our theorem.
出处
《工程数学学报》
CSCD
北大核心
2008年第1期165-168,共4页
Chinese Journal of Engineering Mathematics
基金
浙江省自然科学基金(Y606154)