期刊文献+

非线性不等式组的信赖域算法 被引量:5

Trust Region Method for Nonlinear Inequalities
下载PDF
导出
摘要 对于非线性不等式组的求解,采用构造辅助函数将非线性不等式组转化成为一个非线性方程组。文中采用光滑信赖域方法对非线性方程组进行逐次逼近从而求得问题的解。算法的全局收敛性和局部超线性收敛性得到了保证,数值试验表明算法对于小规模问题是切实可行的。 Based on a new smooth function, we reformulate nonlinear inequalities as a nonsmooth equation. Then a successive approximation trust region method for solving the minimization problem is proposed and the global convergence of the method is established. In addition, it is verified that the method is also superlinearly convergent under the suitable condition. Numerical results show that our algorithm performs well for the small-scale nonlinear inequalities.
出处 《工程数学学报》 CSCD 北大核心 2008年第2期224-230,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10661005) 广西自然科学基金(0640165).
关键词 非线性不等式组 信赖域方法 逐次近似 全局收敛 局部超线性收敛 nonlinear inequalities trust region method successive approximation global convergence superlinear convergence
  • 相关文献

参考文献10

  • 1Chen X. On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms[J]. Ann Inst Statist Math, 1990, 42:387-401.
  • 2Chen X, Qi L. Parameterized newton method and Broyden-like method for solving nonsmooth equations[J]. Computational Optimization and Applications, 1994, 3:157-179.
  • 3Chen X, Yamamoto T. On the convergence of some quasi-newton methods for nonlinear equations with nondifferentiable operators[J]. Computing, 1992, 58:87-94.
  • 4Ma C. Convergence analysis of a successive approximation quasi-Newton method for solving nonlinear complementarity problems[J]. Journal Mathematical Research and Exposition, 2006, 26(1): 179-188.
  • 5刘国山.无约束非光滑优化问题的信赖域算法及收敛性[J].计算数学,1998,20(2):113-120. 被引量:8
  • 6袁亚湘.信赖域方法的收敛性[J].计算数学,1994,16(3):333-346. 被引量:60
  • 7Yuan Y. Conditions for convergence of trust region algorithms for nonsmooth optimization[J]. Math Programming, 1985, 31:220-228.
  • 8Dennis J E, Lis B, Tapia K A. A unified approach to globle convergence of trust region methods for nonsmooth optimization[J]. Math Programming, 1995, 68:319-346.
  • 9Powell M J D. Convergence properties of a class of minimization algorithms[C].Nonlinear Programming 2, O.L.Mangasarian, R.R.Meyer and S.M.Robinson, eds., Academic Press, New York, 1975.
  • 10Fletcher R. Practical Methods of Optimization, Vol.2, Constrained Optimization[M]. New York: John Wiley and Sons, 1981.

二级参考文献15

  • 1袁亚湘,1993年
  • 2袁亚湘,1993年
  • 3Zhang Y,Math Prog,1992年,55卷,109页
  • 4袁亚湘,J Comput Math,1991年,9卷,348页
  • 5袁亚湘,Math Prog,1990年,47卷,53页
  • 6袁亚湘,Math Prog,1985年,31卷,220页
  • 7袁亚湘,Math Prog,1985年,31卷,269页
  • 8袁亚湘,IMA J Numer Anal,1984年,4期,327页
  • 9戴华,高校应用数学学报,1994年,9卷,3期,312页
  • 10刘钦圣,最小二乘问题计算方法,1989年

共引文献63

同被引文献30

  • 1何郁波,马昌凤,梁茜.非线性不等式组的牛顿法[J].云南大学学报(自然科学版),2006,28(S1):40-44. 被引量:1
  • 2Chen X. On the Convergence of Broyden-Like Methods for Nonlinear Equations with Nondifferentiable Terms[J]. Ann Inst Staffs Math, 1990, 42(2): 387-401.
  • 3Chen X, Qi L. Parameterized Newton Method and BroydenLike Method for Solving Nonsmooth Equations[J]. Computational Optimization and Applications, 1994, 46 (3): 157-179.
  • 4Ma C. Convergence Analysis of a Successive Approximation Quasi-Newton Method for Solving Nonlinear Complementarity Problems[J]. Journal Mathematical Research and Exposition, 2006, 16(3): 333-346.
  • 5Clarke F H. Optimization and Nonsmooth Analysis'[M]. New York: John Wiley, 1983.
  • 6Chen X, Qi L, Sun D. Global and Superlinear Convergence of the Smoothing Newton Method and Its Application to General Box Constrained Variational Inequalities[J]. Math Comp, 1998, 67(222): 519-525.
  • 7Fukushima M. A finitely convergent algorithm for convex inequalities[J]. IEEE Trans Autom Contr, 1982, 27(5): 1126-1127.
  • 8Jian J B, Liang Y M. Finitely convergent algorithm of generalized gradient projection for sys- tems of nonlinear inequalities[ J]. Neural Parallel and Scientific Computing, 2004, 12(2) : 207-218.
  • 9JIAN Jin-bao, CHENG Wei-xin, KE Xiao-yan. Finitely convergent 8-generalized projection al- gorithm for nonlinear systems[J]. JMath Anal Appl, 2007, 332(2) : 1446-1459.
  • 10Ma C F. A globally convergent Levenberg-Marquardt method for the least 12-norm solution of nonlinear inequalities[J]. Applied Mathematics and Computation, 2008, 206(1) : 133-140.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部