期刊文献+

高阶非线性中立型差分方程组多正解的存在性 被引量:1

The Existence of Multiple Positive Solutions for Higher Order Nonlinear Neutral System of Difference Equations
下载PDF
导出
摘要 本文研究了一类高阶非线性中立型差分方程组多正解的存在性。通过构造实Banach空间中的严格集压缩算子及利用不动点指数理论,得到了这类方程组两个正解的存在性准则。所得结论推广并改进了已有的相关结果。 Multiple positive solutions for a class of higher order nonlinear neutral system equations are studied in this paper. By constructing the strict set contraction operator in a real Banach space and using the fixed point index theory, existence criteria for two positive solutions are obtained. The conclusions extend and improve some known results.
作者 贺铁山
出处 《工程数学学报》 CSCD 北大核心 2008年第2期295-301,共7页 Chinese Journal of Engineering Mathematics
基金 广东省教育厅自然科学研究项目基金(Z03052) 广州市科技计划项目基金(2006j1-C0341).
关键词 高阶非线性中立型差分方程组 多正解 不动点指数 higher order nonlinear neutral system of difference equations multiple positive solutions fixed point index
  • 相关文献

参考文献8

二级参考文献1

共引文献51

同被引文献11

  • 1陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.
  • 2Yan Jurang, Feng Qiuxiang. Global attractivity and oscillation in a nonlinear delay equation[J1. Nonlinear Analysis, 2001, 43(1): 101-108.
  • 3Tang Xianhua, Yu Jianshe. Oscillation of nonlinear delay difference equations[J]. J Math Anal Appl, 2000, 249(2): 476-490.
  • 4Agarwal R P, Perera K, O'Regan D. Multiple positive solutions of singular and nonsingular discrete problems[J]. Nonlinear Analysis, 2004, 58(1): 69-73.
  • 5Zhou Zhan, Zhang Qinqin. Uniform stability of nonlinear difference systems[J]. J Math Anal Appl, 1998, 225(2): 486-500.
  • 6Li Wantong, Sun Jianping. Positive solutions of BVPs for third-order nonlinear difference systems[J]. Com- puters Math Applic, 2004, 47(4): 611-620.
  • 7Jiang Daqing, Agarwal R P. Existence of positive periodic solutions for a class of difference equations with several deviating arguments[J]. Computers Math Applic, 2003, 45(9): 1303-1309.
  • 8Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. New York: CBMS Reg Conf Ser in Math 65, 1986.
  • 9Clark D C. A variant of the Liusternik-Schnirelman theory[J]. Indiana Univ Math J, 1972, 22:65-74.
  • 10高英,张广,葛渭高.时滞差分方程周期正解的存在性[J].系统科学与数学,2003,23(2):155-162. 被引量:13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部