期刊文献+

生长曲线模型下的统一有偏估计 被引量:2

Unified Biased Estimators of Parameters in Growth Curve Models
下载PDF
导出
摘要 生长曲线模型有很重要的实际应用背景,针对该模型存在的复共线性问题,本文将统一有偏估计推广到生长曲线模型下,提出多元统一有偏估计。并讨论了它的可容许性,找到了它一致优于最小二乘估计的椭球范围。同样,在实际应用中还会经常遇到带约束的生长曲线模型,针对此时存在着的复共线性问题作了类似的研究,提出了约束多元统一有偏估计。 There is an important practical background for growth-curve models, in view of the model of the multi-collinearity problem, we study the unified biased estimation of growth-curve model, and propose the multivariate unified biased estimation, then we discuss its admissibility, and deduce the elliptical range in which the proposed multivariate unified biased estimation is surely superior to the ordinary least squares estimation. Likewise, we often meet the restricted growth-curve model in practical application of linear models, when the multi-collinearity happens in this model, we propose a new estimation restricted multivariate unified biased estimation.
作者 郑彭丹 杨虎
出处 《工程数学学报》 CSCD 北大核心 2008年第2期353-357,共5页 Chinese Journal of Engineering Mathematics
关键词 生长曲线模型 多元统一有偏估计 约束多元统一有偏估计 growth curve model multivariate unified biased estimators restricted multivariate unified biased estimators
  • 相关文献

参考文献4

二级参考文献16

  • 1王松桂,杨虎.Pitman准则下的线性估计[J].科学通报,1994,39(16):1444-1447. 被引量:6
  • 2严利清,王松桂.一类自适应岭估计的小样本性质[J].应用概率统计,1994,10(2):194-201. 被引量:3
  • 3潘建新.增长曲线模型中回归参数的最小二乘估计及Gauss-Markov定理[J].数理统计与应用概率,1988,3(2):169-185.
  • 4[1]Potthoff R F, Roy S N. A generalized muthivariate analysis of variance model useful especially for growth curve problem[J]. Biometrika, 1964;51:313-326
  • 5[2]Rao C R. The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves[J]. Biometrika, 1965;52:447-458
  • 6[3]Lee J C. Prediction and estimation of growth curves with special covariance structures[J]. JASA,1988;83:432-440
  • 7[7]Rao C R.Linear Statistical Inferences and its Applications[M].Second Edition,John Wiley,NY,1973
  • 8[9]倪国熙.常用的矩阵理论与方法[M].上海科学技术出版社,1984
  • 9杨虎.Gauss-Markov模型存在复共线性时的一般主成分回归[J]重庆交通学院学报,1988(03).
  • 10王松桂.主成分的最优性与广义主成分估计类[J]应用概率统计,1985(01).

共引文献13

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部