期刊文献+

基于PCNN与LR的低对比度图像增强方法

Method of low contrast image enhancement based on PCNN and LR
下载PDF
导出
摘要 图像增强是指对图像进行加工,以获得更"好"的视觉效果的一种图像处理技术。由于图像的最终接收者是人,所以评价图像"好坏"的关键在于其是否符合人类视觉系统的特性。针对低对比度图像,结合人眼视觉神经系统的感知特性,提出了一种基于PCNN与LR模型的图像增强方法。分析和仿真结果表明,该法能够较好地突出图像的边缘细节信息,明显地改善图像的视觉效果。 Image enhancement is an algorithm which is performed on image, to make it seemed "better".Since human being is the final receiver of the image,the key point of the image assessment is that it should be in conformity with the characteristics of human visual system.In this paper,a new method of low contrast image enhancement is presented based on PCNN and LR models in conjunction with characteristics of human visual consciousness.Results of analysis and experiments show that this method strengthens the details of edges and ameliorates visual effect obviously.
作者 朱昊 金文标
出处 《计算机工程与应用》 CSCD 北大核心 2008年第17期162-165,共4页 Computer Engineering and Applications
关键词 脉冲耦合神经网络 人眼视觉特性 图像增强 对比度 Pulse Coupled Neural Networks(PCNN) Human Visual System (HVS) image enhancement image contrast
  • 相关文献

参考文献16

  • 1Pratt W K.Digital image processing[M].3rd ed.[S.l.]:John Wiley & Sons,2001.
  • 2Kinser J M,Lindblad T.Implementation of pulse coupled neural networks in a CNAPS environment[J].IEEE Trans Neural Networks, 1999,10(3 ) : 584-590.
  • 3Lindblad T,Kinser J M.lnherent feature of wavelets and pulse coupled networks[J].IEEE Trans Neural Networks, 1999,10(3):607- 614.
  • 4Granrath D J.The role of human visual models in image processing[J].Proceedings IEEE, 1981,69( 5 ) : 552-561.
  • 5Eckhorn R,Reitboeck H J,Arndt M.Feature linking via synchronization among distributed assemblies:simulation of results from eat eortex[J].Neural Computing, 1990,2(3) :293-307.
  • 6Eckhorn R,Reitboeck H J,Arndt M,et al.A neural network for future linking via synchronous activity:results from cat visual cortex and from simulations[C]//Cotterill R M J.Models of Brain Function. Ed Cambridge:Cambridge University Press, 1989:255-272.
  • 7Kuntimad G,Ranganath H S.Perfect image segmentation using pulse coupled neural networks[J].IEEE Trans Neural Networks, 1999, 10(3):591-598.
  • 8Ranganath H S,Kuntimad G.Object detection using pulse coupled neural networks[J].IEEE Trans Neural Networks, 1999,10(3) :615- 620.
  • 9张军英,卢涛.通过脉冲耦合神经网络来增强图像[J].计算机工程与应用,2003,39(19):93-95. 被引量:11
  • 10石美红,李永刚,张军英,吴戴明.一种新的彩色图像增强方法[J].计算机应用,2004,24(10):69-71. 被引量:7

二级参考文献50

  • 1容观澳.计算机图像处理[M].清华大学出版社,2000.269-288.
  • 2章毓晋.图像处理和分析[M].北京:清华大学出版社,2000.218-219.
  • 3章毓晋.图像处理和分析.图像工程(上册)[M].北京:清华大学出版社,1999..
  • 4[3]LI TL,SUNDAREHAN MK.Adaptive image contrast enhancement based on human visual properties[J].IEEE Transaction Medical Imaging,1994,13(4):573-586.
  • 5[4]CHANG DC,WU WR.Image contrast enhancement based on a histogram transformation of local standard deviation[J].IEEE Transaction Medical Imaging,1998,17(4):518-531.
  • 6[5]KINSER JM,LINDHLAD T.Implementation of Pulse-Coupled Neural Networks in a CNAPS Environment[J].IEEE Transaction Neural Networks,1999.10(3):119-126.
  • 7[6]ECKHORN R,REITBOECK HJ,ARNDT M,et al.A neural network for future linking via synchronous activity:Results from cat visual cortex and from simulations[A].Models of Brain Function[C],Cambridge,UK:Cambridge Uinv.Press,1989.255-272.
  • 8[7]JOBSON DJ,RAHMAN Z,WOODELL GA.The statistics of visual representation [A].Proceedings of SPIE Visual Information Proceeding XI[C].2002,4736:25-35.
  • 9[9]CHEUNG HN,BOUZERDOUM A,NEWLAND W.Properties of shunting inhibitory cellular neural networks for color image enhancement [A].The 6th International Conference on Neural Information Processing[C].1999,(3):1219-1223.
  • 10[10]JOHNSON JL,PADGETT ML.PCNN Models and Applications[J].IEEE Transaction Neural Networks,1999,10(3):480-498.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部