期刊文献+

不同磁场退火方式FeZrBCu薄膜巨磁阻抗效应比较

Comparisons of Giant Magneto-impedance Effect of FeZrBCu Films Annealed Under Magnetic Field with Different Modes
下载PDF
导出
摘要 用射频溅射法制备了(Fe88Zr7B5)0.97Cu0.03软磁合金薄膜,研究了不同磁场退火方式对薄膜磁导率和巨磁阻抗(GMI)效应的影响。结果表明,纵向和横向磁场退火都能有效地提高薄膜样品的巨磁阻抗效应,在13MHz频率下纵向最大GMI比分别为18.6%和17%;纵向磁场退火后薄膜样品的横向磁各向异性消失,横向磁场退火则能有效增强横向磁各向异性,提高巨磁阻抗效应的磁场响应灵敏度;磁场诱导的磁导率变化是巨磁阻抗效应变化的主要原因。 The (Fe88Zr7B5)0.97Cu0.03 films were deposited by radio frequency sputtering on the substrate of single crystal Si. The GMI effects and permeability of samples annealed in a field with different modes have been studied. The obtained results showed that the GMI Patios could be improved observably by longitudinal and transverse field annealing, with the maximum longitudinal GMI ratios being 18,6% and 17% at the frequency of 13 MHz, respectively. It is also revealed that longitudinal field annealing could effectively relieve transverse magnetic anisotropy, transverse annealing could effectively induce transverse magnetic anisotropy and improve the field sensitivity of longitudinal GMI. The GMI effect attributes mainly to the field-induced change of permeability.
出处 《磁性材料及器件》 CAS CSCD 2008年第2期17-20,共4页 Journal of Magnetic Materials and Devices
基金 浙江省教育厅资助项目(20050050)
关键词 FeZrBCu薄膜 巨磁阻抗效应 磁场退火 感生各向异性 磁导率 FeZrBCu film giant magneto-impedance effect field annealing induced magnetic anisotropy permeability
  • 相关文献

参考文献16

  • 1Yuji N, Norikazu O. Thin film magnetic field sensor utilizing magneto impedance effect[J]. R&D Review of Toyota CRDL, 2000, 35(4): 1-6.
  • 2Makhnovskiy D P, Panina L V, Mohri K, et al. Off-diagonal impedance in amorphous wires and application to linear magnetic sensors[J]. IEEE Trans Magn, 2004, 40: 3505-3524.
  • 3Kentaro T, Yoichi H, Masayoshi E. Three-axis magnetoimpedance effect sensor system for detecting position and orientation of catheter tip[J]. Sensors and Actuators A, 2004, 111: 304-309.
  • 4Suzuki K, Makino A, Inoue A, et al. Soft magnetic properties of nanocrystalline bcc Fe - Zr - B and Fe - M - B-Cu(M--transition metal) alloys with high saturation magnetization[J]. J Appl Phys, 1991, 70:6232-6237.
  • 5Suzuki K, Makino A, Inoue A, et al. Low core losses of nanocrystalline Fe-M-B(M=Zr, Hf or Nb)alloys[J]. J Appl Phys, 1993, 74(5): 3316-3322.
  • 6Kojima A, Makino A, Kawamura Y, et al. Soft-magnetic properties of nanocrystalline Fe-Zr-B-Ni bulk alloy produced by warm extrusion[J]. J Appl Phys, 1996, 35:L19- L22.
  • 7Aragoncscs P, Holzer D, Sassik H, ct al. Frequency dependence of GMI effect in nanocrystalline Fe86Zr7B6Cu1 ribbons[J]. J Magn Magn Mater, 1999, 203:292-294.
  • 8Kim Y S, Phan M H, Yu S C, et al. Annealing and neutron-irradiation effects on the permeability of Fe86Zr7B6Cu1[J]. Physica B: Condensed Matter, 2003,327(2- 4): 311-314.
  • 9Tang J C, Wu A H, Mao X Y, et al. Effects of hot isothermal pressing on the microstructures and soft magnetic properties of nanocrystalline Fes6Zr7B6Cu1 ribbons[J]. J Appl Phys, 2004,37: 151-154.
  • 10Alves F, Simon F, Kane S N, et al. Influence of rapid stress annealing on magnetic and structural properties of nanocrystalline Fe74.sCulNb3Si15.5B6 alloy[J]. J Magn Magn Mater, 2005, 294(2): e141-e144.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部