摘要
对求解非线性无约束优化问题中给出了新的参数应用于共轭梯度法;并证明了该方法在强Wolfe线搜索下具有充分下降性,同时具有全局收敛性。将本文提出的参数与引文中参数作比较,讨论了这一类参数在证明中的成立条件。
In this paper,we present a new conjugate gradient method for unconstrained optimization based on Fletcher-Reeves algorithms and proved that with the strong Wolfe linear search the new mehtod can support the global convergence result, At the same time, the new conjugate gradient algorithm satisfies the sufficient descent property. We also put the parameters in comparison with that in the citation, and discussed the establishment conditions of the parameters in the process of proof.
出处
《长春大学学报》
2008年第4期25-28,共4页
Journal of Changchun University
关键词
无约束最优化
共轭梯度法
强WOLFE线性搜索
全局收敛性
unconstrained optimization
conjugate gradient method
strong Wolfe linear search
global convergence