摘要
研究了二维热传导方程的非古典对称的决定方程,对于一般的一维偏微分方程,运用向量场的延拓和不变表面条件及初始方程的相容性两种方法得出了相同的非古典对称的决定方程.由此,得到了利用不变条件及初始方程的相容性也可求得非线性偏微分方程的非古典对称的决定方程的重要结论.最后,将此结论推广到二维热传导方程,证明了该结论对于二维热传导方程也是可行的.
The determining equations for the nonclassical symmetries of the two-dimensional heat equation are studied. A simple partial differential equation is quoted. It is concluded that the nonclassical symmetries of the nonlinear partial differential equations can be derived by using the compatibility between the original equation and the invariant surface condition. Finally, the conclusion is used to discuss the two-dimensional heat equation.
出处
《江苏大学学报(自然科学版)》
EI
CAS
北大核心
2008年第3期273-276,共4页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(90610031)
江苏省教育厅基金资助项目(03SJB790008)
江苏大学高级人才基金资助项目(07JDG054)
关键词
偏微分方程
对称
不变性
导数
生成元
partial differential equation
symmetries
invariance
differentiation
generators