期刊文献+

二维热传导方程的非古典对称和相容性

Nonclassical symmetries and compatibility of two-dimensional heat equation
下载PDF
导出
摘要 研究了二维热传导方程的非古典对称的决定方程,对于一般的一维偏微分方程,运用向量场的延拓和不变表面条件及初始方程的相容性两种方法得出了相同的非古典对称的决定方程.由此,得到了利用不变条件及初始方程的相容性也可求得非线性偏微分方程的非古典对称的决定方程的重要结论.最后,将此结论推广到二维热传导方程,证明了该结论对于二维热传导方程也是可行的. The determining equations for the nonclassical symmetries of the two-dimensional heat equation are studied. A simple partial differential equation is quoted. It is concluded that the nonclassical symmetries of the nonlinear partial differential equations can be derived by using the compatibility between the original equation and the invariant surface condition. Finally, the conclusion is used to discuss the two-dimensional heat equation.
作者 蔡国梁 李丹
机构地区 江苏大学理学院
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2008年第3期273-276,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(90610031) 江苏省教育厅基金资助项目(03SJB790008) 江苏大学高级人才基金资助项目(07JDG054)
关键词 偏微分方程 对称 不变性 导数 生成元 partial differential equation symmetries invariance differentiation generators
  • 相关文献

参考文献7

  • 1吴双军,田立新.一类非线性强度Boussinesq方程的Compacton解和孤立波解[J].江苏大学学报(自然科学版),2005,26(B12):5-9. 被引量:1
  • 2QIAN Su-Ping,TIAN Li-Xin.Lie Point Symmetries and Exact Solutions of Couple KdV Equations[J].Communications in Theoretical Physics,2007,47(4):582-586. 被引量:5
  • 3Gandarias M L, Bruzon M S. Nonclassical symmetries for a family of Cahn-Hilliard equations[ J]. Physics Letters A, 1999, 263(4 -6) : 331 -337.
  • 4蔡国梁,王燕,张风云.Boussinesq方程的非古典对称和相容性[J].江苏大学学报(自然科学版),2007,28(5):457-460. 被引量:4
  • 5Cai Guoliang, Ling Xudong. Nonclassical symmetries of a class of nonlinear partial differential equations and compatibility [ J ]. World Journal of Modelling and Simulation, 2007, 3(1): 51-57.
  • 6Daniel J Arrigo, Jon R Beckham. Nonclassical symmetries of evolutionary partial differential equations and compatibility[J]. J Math Anal and Appl, 2004, 289: 55 - 65.
  • 7Niu Xiaohua, Pan Zuliang. Nonclassical symmetries of a class of nonlinear partial differential equations with arbitrary order and compatibility [ J ]. J Math Anal and Appl, 2005, 311(2): 479-488.

二级参考文献20

  • 1殷久利,田立新,桂贵龙.广义Camassa-Holm方程的对称性约化和精确解[J].江苏大学学报(自然科学版),2005,26(4):312-315. 被引量:6
  • 2Peter J.Olver,Applications of Lie Groups to Differential Equations,Springer,New York (1986).
  • 3George W.Bluman and Sukeyuki Kumei,Symmetries and Differential Equations,Springer,New York (1989).
  • 4L.V.Ovsiannikov,Group Analysis of Differentital Equations,Academic Press,New York (1982).
  • 5S.Y.Lou,J.Math.Phys.41 (2000) 6509.
  • 6A.S.Fokas,Symmetries and Integrability,Stud.Appl.Math.77 (1987) 253.
  • 7B.Fuchssteiner,Prog.Theor.Phys.70 (1983) 1508.
  • 8A.V.Mikhailov,A.B.Shabat,and V.V.Sokolov,The Symmetry Approach to Classification of Integrable Equations,in:What is integrablity? Springer,Berlin (1990)115.
  • 9S.Y.Lou,B.Tong,H.C.Hu,and X.Y.Tang,J.Phys.A:Math.Gen.39 (2006) 513.
  • 10S.Y.Lou and X.Y.Tang,J.Math.Phys.45 (2004) 1020.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部