期刊文献+

应用支持向量回归预测胶凝原油启动屈服应力 被引量:4

Prediction of start-up yield stress of gelled crude oil by support vector regression
下载PDF
导出
摘要 启动屈服应力的影响因素很多,且呈现复杂的非线性关系。以室内管流实验数据为基础,分析了启动屈服应力随启动温度、启动流量、静态温降幅度和停输时间的变化规律,并应用支持向量回归方法得到预测胶凝原油管道启动屈服应力的计算公式。预测值与实测值的对比结果验证了计算公式的可靠性。 The start-up yield stress of gelled crude oil is affected by many factors such as start-up temperature, start-up flow rate, temperature drop and shutdown duration. Support vector regression (SVR) is a common and efficient technique for nonlinear multivariate analysis. Based on the data collected on the experimental loop for oil rheological property research, the start-up properties of gelled crude oil were studied under different start-up temperatures, start-up flow rates, temperature drops during shutdown period and shutdown durations. In addition, the SVR method was applied to the experimental data, and a new formula with improved precision was obtained to predict the start-up yield stress of gelled crude oil. The contrast result between the prediction value and the measured data validated the reliability of the formula.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期119-121,127,共4页 Journal of China University of Petroleum(Edition of Natural Science)
关键词 支持向量机 非线性回归 启动屈服应力 胶凝原油 管流实验 support vector machine nonlinear regression start-up yield stress gelled crude oil pipe flow experiment
  • 相关文献

参考文献5

二级参考文献33

  • 1蒋永兴.含蜡原油屈服过程及其受空隙影响的实验研究[J].力学与实践,1994,16(1):19-21. 被引量:6
  • 2BarnesHA.The yield stress- a review or- everything flow [J].Journal of non- newtonian fluid mechanics,1999,81(2):133-178.
  • 3张国忠.热油管道停输后的启动过程研究[A]..全国油气储运技术会议文集[C].东营:石油大学出版社,2003.77-82.
  • 4YAN Da- fan, et al. Rheological properties of Daqing crude oil and their application in pipeline transportation[R]. SPE 14854, 1987.
  • 5Kunal Karan, et al. Measurement of waxy crude properties using novel laboratory techniques[ R ], SPE 62945, 2000.
  • 6Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 7Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 8Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 9Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 10Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.

共引文献160

同被引文献27

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部