期刊文献+

基于互信息的电力负荷组合预测模型 被引量:3

Combination model of forecasting power load based on mutual information
下载PDF
导出
摘要 针对电力负荷组合预测中权重难以分配问题,运用信息论与模糊评价方法,提出一种新的确定权重的方法。用互信息度量各个预测模型的精度,对所有预测模型的互信息进行模糊评价,并赋予各预测模型相应的权重,互信息大的模型获得较大的权重;反之,获得较小的权重,进而建立一个新的组合预测模型。实例应用表明,经多个误差分析指标的评价,所提出的组合预测模型不仅优于其中任何单个预测模型,而且优于基于熵的组合预测模型。 No good solution to determining the weight coefficient in combination forecasting of power load has been found as yet. This paper attempted to propose a new method for solving the weight coetficient based on information theory and fuzzy evaluation. The accuracy of each forecast model is measured by mutual information. After fuzzy evaluation of the mutual information, each prediction model is assigned an appropriate weight coefficient on the principle that the bigger the mutual information, the bigger the weight coefficient. Numerical experiment shows that the proposed combination forecast model outperforms any of the models in the forecast model and the combination forecast model based on entropy.
出处 《中国电力》 CSCD 北大核心 2008年第6期11-13,共3页 Electric Power
基金 国家自然科学基金资助项目(60375001)
关键词 电力负荷 互信息 模糊评判 组合预测 mutual information fuzzy evaluation combination forecast
  • 相关文献

参考文献6

二级参考文献85

共引文献523

同被引文献22

  • 1丁剑,艾明建,吴安平.西部大开发第二个十年四川省电力需求预测[J].中国电力,2012,45(9):35-39. 被引量:7
  • 2李序颖,陈宏民.居民收入与城市经济水平的空间自回归模型[J].系统工程理论方法应用,2005,14(5):395-399. 被引量:19
  • 3李序颖.空间相关数据的空间经济计量模型[J].上海海事大学学报,2006,27(2):70-74. 被引量:7
  • 4Anselinl.Spatial Econometrics:Methods and Models[M].Kluwer-Academic,Dordrecht,1988.
  • 5Pace,R.K and R.Barry.Sparse spatial autoregressions[J].S tatistics & Probability Letters,1997(33):291 -2971.
  • 6Moran,P.A.P.A test for the serial dependence of residuals[J].Biom etrika,1950(37):178-1811.
  • 7Hagan M T,Demuth H B,Beale M H.Neural network design[M].Beijing:China Machine Press,2002.
  • 8Mohan Saini L,Kumar Soni M.Artificial neural network-based peak load forecasting using conjugate gradient methods[J].IEEE Trans on Power Systems,2002,17 (3):907-912.
  • 9HAHN H, MEYER N S. PICKL S. Electric load forecasting methods: tools for decision making [J]. European Journal of operational research, 2009, 199(3): 902-907.
  • 10SONG K B, BACK Y S, HONG D H, et al. Short-term load forecasting for the holidays using fuzzy linear regression model[J]. IEEE Transactions on Power Systems, 2005, 20( 1 ): 96-101.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部